find the limit lim x→0 x^2 cos 1/x.
Given "\\varepsilon>0" , choose "\\delta=\\sqrt{\\varepsilon}"
Now, if "x" is chosen so that "0<|x-0|<\\delta" ,
then
"\\begin{aligned}\n\n\\left|x^{2} \\cos \\left(\\frac{1}{x}\\right)-0\\right| &=\\left|x^{2}\\right|\\left|\\cos \\left(\\frac{1}{x}\\right)\\right| \\\\\n\n&=x^{2}\\left|\\cos \\left(\\frac{1}{x}\\right)\\right| \\\\\n\n& \\leq x^{2}(1) \\\\\n\n&<(\\sqrt{\\varepsilon})^{2}=\\varepsilon\n\n\\end{aligned}"
That is: if "0<|x-0|<\\delta" , then "\\left|x^{2} \\cos \\left(\\frac{1}{x}\\right)-0\\right|<\\varepsilon"
So, by definition of limit, "\\lim _{x \\rightarrow 0}\\left(x^{2} \\cos \\left(\\frac{1}{x}\\right)\\right)=0."
Comments
Leave a comment