Question #287079

find the limit lim x→0 x^2 cos 1/x.


1
Expert's answer
2022-01-13T16:55:55-0500

Solution:

Given ε>0\varepsilon>0 , choose δ=ε\delta=\sqrt{\varepsilon}

Now, if xx is chosen so that 0<x0<δ0<|x-0|<\delta ,

then

x2cos(1x)0=x2cos(1x)=x2cos(1x)x2(1)<(ε)2=ε\begin{aligned} \left|x^{2} \cos \left(\frac{1}{x}\right)-0\right| &=\left|x^{2}\right|\left|\cos \left(\frac{1}{x}\right)\right| \\ &=x^{2}\left|\cos \left(\frac{1}{x}\right)\right| \\ & \leq x^{2}(1) \\ &<(\sqrt{\varepsilon})^{2}=\varepsilon \end{aligned}

That is: if 0<x0<δ0<|x-0|<\delta , then x2cos(1x)0<ε\left|x^{2} \cos \left(\frac{1}{x}\right)-0\right|<\varepsilon

So, by definition of limit, limx0(x2cos(1x))=0.\lim _{x \rightarrow 0}\left(x^{2} \cos \left(\frac{1}{x}\right)\right)=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS