limf(x)defined byx+11=−1asx−>−2By epsilon-delta definition of limit.Given,ϵ>0,we want to find aδ>0such that0<∣x−x0∣<δ⟹∣f(x)+1∣<ϵHence, we have∣x+11−(−1)∣=∣x+1x+2∣∣x+11∣∣x+2∣Since we are interested in valuescloser to 2, we may assume that∣x+2∣<1⟹−1<x+2<1−3<x<−1⟹−3<x<−1<3−3<x<3⟹−3+1<x+1<3+1−2<x+1<4⟹41<x+11<−2141<x+11<−21<−41⟹41<x+11<−41⟹∣x+11∣<41Hence, we see that∣f(x)−(−1)∣<∣x+11∣∣x+2∣<ϵ⟹41∣x+2∣<ϵ⟹∣x+11−(−1)∣<ϵprovided that∣x+2∣<4ϵThus, givenϵ>0,chooseδ=min{1,4ϵ}With this choice ofδwe have0<∣x+2∣<δ⟹∣f(x)+1∣<ϵshowing thatlimf(x)defined byx+11=−1asx−>−2
Comments