Question #287024

{F} Determine the length of the parametric curve given by the following parametric equations. x=3sin(t) y=3cos(t) 0<t<2π


1
Expert's answer
2022-02-01T07:39:00-0500
dx/dt=3cos(t),dy/dt=3sin(t)dx/dt=3\cos(t), dy/dt=-3\sin(t)

L=02π(dx/dt)2+(dy/dt)2dtL=\displaystyle\int_{0}^{2\pi}\sqrt{(dx/dt)^2+(dy/dt)^2}dt

=02π(3cos(t))2+(3sin(t))2dt=\displaystyle\int_{0}^{2\pi}\sqrt{(3\cos(t))^2+(-3\sin(t))^2}dt

=302πdt=3[t]2π0=3(2π0)=6π(units)=3\displaystyle\int_{0}^{2\pi}dt=3[t]\begin{matrix} 2\pi \\ 0 \end{matrix}=3(2\pi-0)=6\pi(units)

L=6π unitsL=6\pi\ units


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS