Question #285959

A rectangular billboard 6 feet in height stands in a field so that its bottom is 13 feet above the ground. A nearsighted cow with eye level at 4 feet above the ground stands x

x

 feet from the billboard. Express θ

θ

, the vertical angle subtended by the billboard at her eye, in terms of x

x

. Then find the distance x


x


 the cow must stand from the billboard to maximize θ

θ

.



1
Expert's answer
2022-01-10T16:19:27-0500
θ(x)=tan113+64xtan1134x\theta(x)=\tan^{-1}\dfrac{13+6-4}{x}-\tan^{-1}\dfrac{13-4}{x}

θ(x)=tan115xtan19x,x>0\theta(x)=\tan^{-1}\dfrac{15}{x}-\tan^{-1}\dfrac{9}{x}, x>0

Take the derivative with respect to xx


θ(x)=11+(15x)2(15x2)11+(9x)2(9x2)\theta '(x)=\dfrac{1}{1+(\dfrac{15}{x})^2}(-\dfrac{15}{x^2})-\dfrac{1}{1+(\dfrac{9}{x})^2}(-\dfrac{9}{x^2})

=9x2+8115x2+225=\dfrac{9}{x^2+81}-\dfrac{15}{x^2+225}

Find the critical number(s)


θ(x)=0=>9x2+8115x2+225=0\theta '(x)=0=>\dfrac{9}{x^2+81}-\dfrac{15}{x^2+225}=0

9x2+81=15x2+225\dfrac{9}{x^2+81}=\dfrac{15}{x^2+225}

3(x2+225)=5(x2+81)3(x^2+225)=5(x^2+81)

2x2=2702x^2=270

x2=135x^2=135

x=±135x=\pm\sqrt{135}

x=±315x=\pm3\sqrt{15}

Since x>0x>0 we take x=315.x=3\sqrt{15}.

If 0<x<315,θ(x)>0,θ(x)0<x<3\sqrt{15}, \theta'(x)>0, \theta(x) increases.

If x>315,θ(x)<0,θ(x)x>3\sqrt{15}, \theta'(x)<0, \theta(x) decreases.

The cow must stand at 3153\sqrt{15} feet from the billboard to maximize θ.θ.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS