Given, length of wire = 20 m.
Let the radius of the circle be r m and side of the square be s m.
Then, circumference of circle + perimeter of square = 20
2πr+4s=20⇒πr+2s=10⇒s=210−πr ...(i)
Let total area of two parts be A. So,
A=πr2+s2⇒A=πr2+(210−πr)2 [Using (i)]
On differentiating w.r.t r,
drdA=2πr+21(10−πr)(−π)=2πr−5π+21π2r
(a) Put drdA=0
⇒2πr−5π+21π2r=0⇒r(2π+21π2)=5π⇒r=2+21π5⇒r=4+π10 m ...(ii)
The diameter of the circle is D=2r=4+π20
(b) Again differentiating drdA w.r.t. r,
drdA=2πr−5π+21π2rdr2d2A=2π+21π2>0
Now put (ii) in (i)
s=210−π(4+π10)⇒s=24+π40+10π−10π⇒s=4+π20 m
(c)
Now, the sum of the maximum area of the two figures in m^2 is
A=πr2+s2⇒A=π(4+π10)2+(4+π20)2⇒A≈14 m2
Comments