Question #285739

SHOW COMPLETE SOLUTION

A wire of length 20m is cut into two parys, one of which is bent into a circle and the other into a square. if the sum of the area of the figures is maximum,

a. find the diameter of the circle.

b. find the side of the square.

c. find the sumof the maximum area of the two figures in m^2.


1
Expert's answer
2022-01-11T08:59:47-0500

Solution:

Given, length of wire = 20 m.

Let the radius of the circle be rr m and side of the square be ss m.

Then, circumference of circle + perimeter of square = 20

2πr+4s=20πr+2s=10s=10πr2 ...(i)2\pi r+4s=20 \\ \Rightarrow \pi r+2s=10 \\ \Rightarrow s=\dfrac{10-\pi r}{2}\ ...(i)


Let total area of two parts be A. So,

A=πr2+s2A=πr2+(10πr2)2A=\pi r^2+s^2 \\ \Rightarrow A=\pi r^2 +(\dfrac{10-\pi r}{2})^2 [Using (i)]

On differentiating w.r.t r,

dAdr=2πr+12(10πr)(π)=2πr5π+12π2r\dfrac{dA}{dr}=2\pi r+\dfrac12(10-\pi r)(-\pi) \\=2\pi r-5\pi +\dfrac12\pi^2 r

(a) Put dAdr=0\dfrac{dA}{dr}=0

2πr5π+12π2r=0r(2π+12π2)=5πr=52+12πr=104+π m ...(ii)\Rightarrow 2\pi r-5\pi +\dfrac12\pi^2 r=0 \\\Rightarrow r(2\pi +\dfrac12\pi^2)=5\pi \\\Rightarrow r=\dfrac{5}{2+\dfrac12\pi} \\\Rightarrow r=\dfrac{10}{4+\pi}\ m \ ...(ii)

The diameter of the circle is D=2r=204+πD=2r=\frac{20}{4+\pi}

(b) Again differentiating dAdr\dfrac{dA}{dr} w.r.t. r,

dAdr=2πr5π+12π2rd2Adr2=2π+12π2>0\dfrac{dA}{dr}=2\pi r-5\pi +\dfrac12\pi^2 r \\ \dfrac{d^2A}{dr^2}=2\pi+\dfrac12\pi^2>0

Now put (ii) in (i)

s=10π(104+π)2s=40+10π10π4+π2s=204+π ms=\dfrac{10-\pi (\dfrac{10}{4+\pi})}{2} \\ \Rightarrow s=\dfrac{\dfrac{40+10\pi-10\pi}{4+\pi}}{2} \\ \Rightarrow s=\dfrac{20}{4+\pi}\ m

(c)

Now, the sum of the maximum area of the two figures in m^2 is

A=πr2+s2A=π(104+π)2+(204+π)2A14 m2A=\pi r^2+s^2 \\ \Rightarrow A=\pi (\dfrac{10}{4+\pi})^2+(\dfrac{20}{4+\pi})^2 \\ \Rightarrow A\approx 14\ m^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS