i) Revenue function is
R(x)=xp(x)=x3+10x2+1000xii) The cost function is
C(x)=xc(x)=22x3+36x2+100x−2 iii) The profit function is
P(x)=R(x)−C(x)
=x3+10x2+1000x−(22x3+36x2+100x−2)
=−21x3−26x2+900x+2 iv)
Find the first derivative of profit with respect to x
P′(x)=−63x2−52x+900,x≥0 Find the critical number(s)
P′(x)=0=>−63x2−52x+900=0
D=(−52)2−4(−63)(900)=229504
x=2(−63)52±229504=63−26±43586
x1=63−26−43586
x2=63−26+43586 Since x≥0, we consider
x=63−26+43586 If 0<x<63−26+43586,P′(x)>0,P(x) increases.
If x>63−26+43586,P′(x)<0,P(x) decreases.
63−26+43586≈3.39
P(3)=−21(3)3−26(3)2+900(3)+2=1901
P(4)=−21(4)3−26(4)2+900(4)+2=1842The profit has the absolute maximum with value of $1901 at x=3 units of output.
p(3)=(3)2+10(3)+1000=1039 The price is $1039.
v) The maximum profit is $1901.
Comments