Solution:
f(x)=y=4x+4−x2
f′(x)=−dxd(4x+4x2)=−(4x+4)2dxd(x2)(4x+4)−dxd(4x+4)x2=−(4x+4)22x(4x+4)−4x2=−4(x+1)2x(x+2)
Then, f′′(x)=dxd(−4(x+1)2x(x+2))
=−41⋅((x+1)2)2dxd(x(x+2))(x+1)2−dxd((x+1)2)x(x+2)=−41⋅((x+1)2)2(2x+2)(x+1)2−2(x+1)x(x+2)=−2(x+1)31
For x-intercept, put y=0.
4x+4−x2=0⇒x=0
So, x-intercept is (0,0).
For y-intercept, put x=0.
y=4(0)+4−02=40=0
So, y-intercept is also (0,0).
For vertical asymptote: put 4x+4=0
⇒x=−1 is vertical asymptote.
For horizontal asymptotes:
Line y=L is a horizontal asymptote of the function y=f(x), if either limx→∞f(x)=L or limx→−∞f(x)=L , and L is finite.
Calculate the limits:
limx→∞(−4x+4x2)=−∞limx→−∞(−4x+4x2)=∞
Thus, there are no horizontal asymptotes.
SLANT ASYMPTOTES:
Do polynomial long division −4x+4x2=−4x+41−4x+41
The rational term approaches 0 as the variable approaches infinity.
Thus, the slant asymptote is y=41−4x.
So, Vertical:x=−1,Horizontal:y=−41x+41(slant)
For critical points, put f'(x)=0
−4(x+1)2x(x+2)=0⇒x=0,x=−2
x coordinates of critical points are x=0, x=-2
Relative minima and maxima:
Put x=0 in f(x).
f(0)=y=0
Put x=-2 in f(x).
f(-2)=y=1
So, Minimum(−2,1),Maximum(0,0)
Concavity intervals:
Put f''(x)=0
−2(x+1)31=0
No inflections points, but because of denominator, intervals are (−∞,−1),(−1,∞).
\mathrm{If}\:f\:''\left(x\right)>0\:\mathrm{then}\:f\left(x\right)\:\mathrm{concave\:upwards.}
\\ \mathrm{If}\:f\:''\left(x\right)<0\:\mathrm{then}\:f\left(x\right)\:\mathrm{concave\:downwards.}
Take x=−2 from (−∞,−1) and put in f''(x).
We get f′′(x)>0, so concave upward.
Take x=0 from (−1,∞) and put in f''(x).
We get f′′(x)<0, so concave downward.
ConcaveUpward:−∞<x<−1,ConcaveDownward:−1<x<∞
Comments