A. Let r = r= r = the radius of the base of the cylinder, let h = h= h = the height of the cylinder. Then V = π r 2 h . V=\pi r^2 h. V = π r 2 h . Solve for h h h
h = V π r 2 h=\dfrac{V}{\pi r^2} h = π r 2 V The amount of the material is
A = 2 π r 2 + 2 π r h A=2\pi r^2+2\pi r h A = 2 π r 2 + 2 π r h Substitute
A = 2 π r 2 + 2 V r A=2\pi r^2+\dfrac{2V}{ r} A = 2 π r 2 + r 2 V Given V = 50.265 m 3 . V=50.265 m^3. V = 50.265 m 3 . Then
A = A ( r ) = 2 π r 2 + 2 ( 50.265 ) r , m , r > 0 A=A(r)=2\pi r^2+\dfrac{2(50.265)}{ r}, m, r>0 A = A ( r ) = 2 π r 2 + r 2 ( 50.265 ) , m , r > 0 Find the first derivative with respect to r r r
A ′ ( r ) = 4 π r − 100.53 r 2 A'(r)=4\pi r-\dfrac{100.53}{ r^2} A ′ ( r ) = 4 π r − r 2 100.53 Find the critical number(s)
A ′ = 0 = > 4 π r − 100.53 r 2 = 0 A'=0=>4\pi r-\dfrac{100.53}{ r^2}=0 A ′ = 0 => 4 π r − r 2 100.53 = 0
r = 100.53 4 π 3 ≈ 2.000 m r=\sqrt[3]{\dfrac{100.53}{ 4\pi}}\approx2.000\ m r = 3 4 π 100.53 ≈ 2.000 m
If 0 < r < 100.53 4 π 3 , A ′ ( r ) < 0 , A ( r ) 0<r<\sqrt[3]{\dfrac{100.53}{ 4\pi}}, A'(r)<0, A(r) 0 < r < 3 4 π 100.53 , A ′ ( r ) < 0 , A ( r ) decreases.
If r > 100.53 4 π 3 , A ′ ( r ) > 0 , A ( r ) r>\sqrt[3]{\dfrac{100.53}{ 4\pi}}, A'(r)>0, A(r) r > 3 4 π 100.53 , A ′ ( r ) > 0 , A ( r ) increases.
The function A ( r ) A(r) A ( r ) has a local minimum at r = 100.53 4 π 3 . r=\sqrt[3]{\dfrac{100.53}{ 4\pi}}. r = 3 4 π 100.53 .
Since the function A ( r ) A(r) A ( r ) has the only extremum, then the function A ( r ) A(r) A ( r ) has the absolute minimum at r = 100.53 4 π 3 . r=\sqrt[3]{\dfrac{100.53}{ 4\pi}}. r = 3 4 π 100.53 .
The radius of the cylindrical tank that requires minimum amount of material used is 2 2 2 m.
B.
h = V π r 2 = V r π r 3 h=\dfrac{V}{\pi r^2}=\dfrac{Vr}{\pi r^3} h = π r 2 V = π r 3 V r If r = 100.53 4 π 3 , r=\sqrt[3]{\dfrac{100.53}{ 4\pi}}, r = 3 4 π 100.53 , then
h = V π r 2 = 50.265 π ( 100.53 4 π ) 100.53 4 π 3 = 2 100.53 4 π 3 h=\dfrac{V}{\pi r^2}=\dfrac{50.265}{\pi (\dfrac{100.53}{ 4\pi})}\sqrt[3]{\dfrac{100.53}{ 4\pi}}=2\sqrt[3]{\dfrac{100.53}{ 4\pi}} h = π r 2 V = π ( 4 π 100.53 ) 50.265 3 4 π 100.53 = 2 3 4 π 100.53
≈ 4.000 ( m ) \approx4.000(m) ≈ 4.000 ( m ) The height of the cylindrical tank that requires minimum amount of material used is 4 4 4 m.
C.
A = 2 π r 2 + 2 π r h = 2 π r ( r + h ) A=2\pi r^2+2\pi rh=2\pi r(r+h) A = 2 π r 2 + 2 π r h = 2 π r ( r + h )
= 2 π ( 2 ) ( 2 + 4 ) = 24 π ( m 2 ) =2\pi(2)(2+4)=24\pi(m^2) = 2 π ( 2 ) ( 2 + 4 ) = 24 π ( m 2 )
2 A = 48 π m 2 2A=48\pi \ m^2 2 A = 48 π m 2
48 π 28 ≈ 5.4 \dfrac{48\pi}{28}\approx5.4 28 48 π ≈ 5.4 6 gallons are needed to paint the tank using two coats of paint.
Comments