Question #285760

f(x)= 3/(x-1)


find the x and y intercepts, vertical and horizontal asymptotes, x coordinates of the critical points, open intervals where the function is concave up and concave down, relative minima and maxima.


Could you also sketch the graph of the function as well.


1
Expert's answer
2022-01-12T08:57:04-0500

Solution:

f(x)=y=3x1f(x)=y=\dfrac3{x-1}

For x-intercept, put y=0.

0=3x1x1=300=\dfrac3{x-1} \\\Rightarrow x-1=\dfrac30

x-intercept does not exist.

For y-intercept, put x=0.

y=301y=3y=\dfrac3{0-1} \\ \Rightarrow y=-3

So, y-intercept is (0,-3).

For vertical asymptotes: Put x1=0x-1=0

So, vertical asymptote: x=1x=1

Line y=L is a horizontal asymptote of the function y=f(x), if either limxf(x)=L\lim _{x \rightarrow \infty} f(x)=L or limxf(x)=L\lim _{x \rightarrow-\infty} f(x)=L , and L is finite.

Calculate the limits:

limx(3x1)=0limx(3x1)=0\lim _{x \rightarrow \infty}\left(\frac{3}{x-1}\right)=0 \\ \lim _{x \rightarrow-\infty}\left(\frac{3}{x-1}\right)=0

Thus, the horizontal asymptote is y=0.

Horizontal asymptote: y=0y=0

Next, f(x)=3x1f(x)=\dfrac3{x-1}

f(x)=ddx(3(x1))=3ddx((x1)1)=3(x1)2f'(x)=\dfrac{d}{dx}\left(\dfrac{3}{\left(x-1\right)}\right) \\=3\dfrac{d}{dx}\left(\left(x-1\right)^{-1}\right) \\=-\dfrac{3}{\left(x-1\right)^2}

put f'(x)=0

3(x1)2=0-\dfrac{3}{\left(x-1\right)^2}=0

No x-coordinate exists for critical values.

So, extreme points exist either.

Now, f(x)=3(x1)2f'(x)=-\dfrac{3}{\left(x-1\right)^2}

f(x)=3ddx(1(x1)2)=3ddx((x1)2)=6(x1)3f''(x)=-3\dfrac{d}{dx}\left(\dfrac{1}{\left(x-1\right)^2}\right) \\=-3\dfrac{d}{dx}\left(\left(x-1\right)^{-2}\right) \\=\dfrac{6}{\left(x-1\right)^3}

Intervals are (,1),(1,)(-\infty,1), (1,\infty).

\mathrm{If}\:f\:''\left(x\right)>0\:\mathrm{then}\:f\left(x\right)\:\mathrm{concave\:upwards.} \\ \mathrm{If}\:f\:''\left(x\right)<0\:\mathrm{then}\:f\left(x\right)\:\mathrm{concave\:downwards.}

Take x=0x=0 from (,1)(-\infty,1) and put in f''(x).

We get f(x)<0f''(x)<0, so concave downward.

Take x=2x=2 from (1,)(1,\infty) and put in f''(x).

We get f(x)>0f''(x)>0, so concave upward.

ConcaveDownward:<x<1,ConcaveUpward:1<x<\mathrm{Concave\:Downward}:-\infty \:<x<1,\:\mathrm{Concave\:Upward}:1<x<\infty


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS