f(x)=y=x−13
For x-intercept, put y=0.
0=x−13⇒x−1=03
x-intercept does not exist.
For y-intercept, put x=0.
y=0−13⇒y=−3
So, y-intercept is (0,-3).
For vertical asymptotes: Put x−1=0
So, vertical asymptote: x=1
Line y=L is a horizontal asymptote of the function y=f(x), if either limx→∞f(x)=L or limx→−∞f(x)=L , and L is finite.
Calculate the limits:
limx→∞(x−13)=0limx→−∞(x−13)=0
Thus, the horizontal asymptote is y=0.
Horizontal asymptote: y=0
Next, f(x)=x−13
f′(x)=dxd((x−1)3)=3dxd((x−1)−1)=−(x−1)23
put f'(x)=0
−(x−1)23=0
No x-coordinate exists for critical values.
So, extreme points exist either.
Now, f′(x)=−(x−1)23
f′′(x)=−3dxd((x−1)21)=−3dxd((x−1)−2)=(x−1)36
Intervals are (−∞,1),(1,∞).
\mathrm{If}\:f\:''\left(x\right)>0\:\mathrm{then}\:f\left(x\right)\:\mathrm{concave\:upwards.}
\\ \mathrm{If}\:f\:''\left(x\right)<0\:\mathrm{then}\:f\left(x\right)\:\mathrm{concave\:downwards.}
Take x=0 from (−∞,1) and put in f''(x).
We get f′′(x)<0, so concave downward.
Take x=2 from (1,∞) and put in f''(x).
We get f′′(x)>0, so concave upward.
ConcaveDownward:−∞<x<1,ConcaveUpward:1<x<∞
Comments