Determine the length of the curve 𝑥 = 𝑦^2 /2 for 0 ≤ 𝑥 ≤ 1/2 . Assume 𝑦 positive.
length of the curve:
L=∫1+(y′)2dxL=\int\sqrt{1+(y')^2}dxL=∫1+(y′)2dx
y=2xy=\sqrt{2x}y=2x
y′=1/(2x)y'=1/(\sqrt{2x})y′=1/(2x)
L=∫01/21+1/(2x)dx=(x1+1/(2x)+ln(2+1/x+2)−ln(2+1/x−2))4∣01/2=L=\int^{1/2}_0\sqrt{1+1/(2x)}dx=(x\sqrt{1+1/(2x)}+\frac{ln(\sqrt{2+1/x}+\sqrt2)-ln(\sqrt{2+1/x}-\sqrt2))}{4}|^{1/2}_0=L=∫01/21+1/(2x)dx=(x1+1/(2x)+4ln(2+1/x+2)−ln(2+1/x−2))∣01/2=
=1/2+ln(2+1)−ln(2−1)4=1/\sqrt 2+\frac{ln(\sqrt2+1)-ln(\sqrt2-1)}{4}=1/2+4ln(2+1)−ln(2−1)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments