Determine the length of the curve 𝑥 = 𝑦^2 /2 for 0 ≤ 𝑥 ≤ 1/2 . Assume 𝑦 positive.
length of the curve:
"L=\\int\\sqrt{1+(y')^2}dx"
"y=\\sqrt{2x}"
"y'=1\/(\\sqrt{2x})"
"L=\\int^{1\/2}_0\\sqrt{1+1\/(2x)}dx=(x\\sqrt{1+1\/(2x)}+\\frac{ln(\\sqrt{2+1\/x}+\\sqrt2)-ln(\\sqrt{2+1\/x}-\\sqrt2))}{4}|^{1\/2}_0="
"=1\/\\sqrt 2+\\frac{ln(\\sqrt2+1)-ln(\\sqrt2-1)}{4}"
Comments
Leave a comment