Question #278659

Determine the length of the curve 𝑥 = 𝑦^2 /2 for 0 ≤ 𝑥 ≤ 1/2 . Assume 𝑦 positive.




1
Expert's answer
2021-12-13T17:12:41-0500

length of the curve:


L=1+(y)2dxL=\int\sqrt{1+(y')^2}dx


y=2xy=\sqrt{2x}

y=1/(2x)y'=1/(\sqrt{2x})


L=01/21+1/(2x)dx=(x1+1/(2x)+ln(2+1/x+2)ln(2+1/x2))401/2=L=\int^{1/2}_0\sqrt{1+1/(2x)}dx=(x\sqrt{1+1/(2x)}+\frac{ln(\sqrt{2+1/x}+\sqrt2)-ln(\sqrt{2+1/x}-\sqrt2))}{4}|^{1/2}_0=


=1/2+ln(2+1)ln(21)4=1/\sqrt 2+\frac{ln(\sqrt2+1)-ln(\sqrt2-1)}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS