The functions f and g are defined by f(x) =1/(1-3x) and g(x) =log1/3(3x-2)-log3(x) respectively
1. Write down the sets Df (ehe domain of f) and Dg (the domain of g)
2. Solve the inequality f(x) > 2 for x"\\isin" Df
3. Solve the inequality f(x) ≥ 2 for x"\\isin" Dg
Hint: Use the change of base formula
1.
"D_f:x\\isin (-\\infin,1\/3)\\cup (1\/3,\\infin)"
"g(x)=log_3(\\frac{1}{x(3x-2)})"
"D_g:x\\isin (-\\infin,0)\\cup (2\/3,\\infin)"
2.
"1\/(1-3x)>2" for "x\\isin (-\\infin,1\/3)\\cup (1\/3,\\infin)"
"0<1-3x<1\/2"
"1\/2<3x<1"
"1\/6<x<1\/3"
"x\\isin (1\/6,1\/3)"
3.
"1\/(1-3x)\\ge2" for "x\\isin (-\\infin,0)\\cup (2\/3,\\infin)"
"0<1-3x\\le1\/2"
"1\/2\\le3x<1"
"1\/6\\le x<1\/3"
"x\\isin [1\/6,1\/3)"
no solutions because no intersection with Dg
Comments
Leave a comment