Question #278656

The functions f and g are defined by f(x) =1/(1-3x) and g(x) =log1/3(3x-2)-log3(x) respectively

1. Write down the sets Df (ehe domain of f) and D(the domain of g)

2. Solve the inequality f(x) > 2 for x\isin Df

3. Solve the inequality f(x) ≥ 2 for x\isin Dg

Hint: Use the change of base formula



1
Expert's answer
2021-12-13T14:16:35-0500

1.

Df:x(,1/3)(1/3,)D_f:x\isin (-\infin,1/3)\cup (1/3,\infin)


g(x)=log3(1x(3x2))g(x)=log_3(\frac{1}{x(3x-2)})


Dg:x(,0)(2/3,)D_g:x\isin (-\infin,0)\cup (2/3,\infin)


2.

1/(13x)>21/(1-3x)>2 for x(,1/3)(1/3,)x\isin (-\infin,1/3)\cup (1/3,\infin)

0<13x<1/20<1-3x<1/2

1/2<3x<11/2<3x<1

1/6<x<1/31/6<x<1/3

x(1/6,1/3)x\isin (1/6,1/3)


3.

1/(13x)21/(1-3x)\ge2 for x(,0)(2/3,)x\isin (-\infin,0)\cup (2/3,\infin)

0<13x1/20<1-3x\le1/2

1/23x<11/2\le3x<1

1/6x<1/31/6\le x<1/3

x[1/6,1/3)x\isin [1/6,1/3)

no solutions because no intersection with Dg

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS