.Find the average value of π(π₯, π¦) = π₯
2π¦ over the region π which is a rectangle with vertices
(β1, 0), (β1, 5), (1, 5), (1, 0).
R=[a,b]Γ[c,d]=[β1,1]Γ[0,5]favg=1(bβa)(dβc)β«cdβ«abf(x,y)dxdy=1(1β(β1))(5β0)β«05β«β11x2ydxdy=110β«0513[x3]β11ydy=13012[y2]05=160Γ25=512R=[a,b]Γ[c,d]=[-1,1]Γ[0,5]\\ f_{avg}=\frac{1}{(b-a)(d-c)}\int_c^d\int_a^b f(x,y)dxdy\\ =\frac{1}{(1-(-1))(5-0)}\int_0^5\int_{-1}^1x^2ydxdy\\ =\frac{1}{10}\int_0^5 \frac{1}{3}[x^3] _{-1}^1ydy\\ =\frac{1}{30}\frac{1}{2}[y^2]_0^5\\ =\frac{1}{60}Γ25\\ =\frac{5}{12}R=[a,b]Γ[c,d]=[β1,1]Γ[0,5]favgβ=(bβa)(dβc)1ββ«cdββ«abβf(x,y)dxdy=(1β(β1))(5β0)1ββ«05ββ«β11βx2ydxdy=101ββ«05β31β[x3]β11βydy=301β21β[y2]05β=601βΓ25=125β
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment