Answer to Question #277193 in Calculus for Air

Question #277193

.Find the average value of 𝑓(π‘₯, 𝑦) = π‘₯


2𝑦 over the region 𝑅 which is a rectangle with vertices


(βˆ’1, 0), (βˆ’1, 5), (1, 5), (1, 0).

1
Expert's answer
2021-12-10T04:31:09-0500

R=[a,b]Γ—[c,d]=[βˆ’1,1]Γ—[0,5]favg=1(bβˆ’a)(dβˆ’c)∫cd∫abf(x,y)dxdy=1(1βˆ’(βˆ’1))(5βˆ’0)∫05βˆ«βˆ’11x2ydxdy=110∫0513[x3]βˆ’11ydy=13012[y2]05=160Γ—25=512R=[a,b]Γ—[c,d]=[-1,1]Γ—[0,5]\\ f_{avg}=\frac{1}{(b-a)(d-c)}\int_c^d\int_a^b f(x,y)dxdy\\ =\frac{1}{(1-(-1))(5-0)}\int_0^5\int_{-1}^1x^2ydxdy\\ =\frac{1}{10}\int_0^5 \frac{1}{3}[x^3] _{-1}^1ydy\\ =\frac{1}{30}\frac{1}{2}[y^2]_0^5\\ =\frac{1}{60}Γ—25\\ =\frac{5}{12}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment