.Find the average value of π(π₯, π¦) = π₯
2π¦ over the region π which is a rectangle with vertices
(β1, 0), (β1, 5), (1, 5), (1, 0).
"R=[a,b]\u00d7[c,d]=[-1,1]\u00d7[0,5]\\\\\nf_{avg}=\\frac{1}{(b-a)(d-c)}\\int_c^d\\int_a^b f(x,y)dxdy\\\\\n=\\frac{1}{(1-(-1))(5-0)}\\int_0^5\\int_{-1}^1x^2ydxdy\\\\\n=\\frac{1}{10}\\int_0^5 \\frac{1}{3}[x^3]\n_{-1}^1ydy\\\\\n=\\frac{1}{30}\\frac{1}{2}[y^2]_0^5\\\\\n=\\frac{1}{60}\u00d725\\\\\n=\\frac{5}{12}"
Comments
Leave a comment