By property of Laplace Transform,
if L−1(G(s))=g(t), then L−1(e−asG(s))=u(t−a)×g(t−a) Now, L(f(t))=s2+π2se−2s=F(s)⇒f(t)=L−1(F(s))=L−1(s2+π2se−2s)=L−1(e−2s×s2+π2s) But, L−1(G(s))=L−1(e−2s×G(s)), where G(s)=s2+π2s⇒f(t)=L−1(e−2s×G(s))=u(t−2)×g(t−2), from the above stated property where a=2=u(t−2)×cos(π(t−2)), since g(t)=cos(πt) Thus ,L−1(s2+π2se−2s)=u(t−2)×cos(π(t−2)).
Comments