∫ ∫ 𝑥𝑦𝑑𝑥𝑑𝑦 2𝑦
𝑦
2
In unit circle we need to find the integral value.
∫∫xydxdy=∫02π∫01r3sinθcosθdrdθ=∫02π[r44]01sinθcosθdrdθ=∫02π14sinθcosθdrdθ=∫02π182sinθcosθdrdθ=∫02π18sin(2θ)drdθ=18[−cos(2θ)2]02π=116[−1+1]=0\int \int xydxdy= \int_0^{2\pi}\int_0^1r^3sin\theta cos\theta drd\theta\\ =\int_0^{2\pi}[\frac{r^4}{4}]_0^1sin\theta cos\theta drd\theta\\ =\int_0^{2\pi}\frac{1}{4}sin\theta cos\theta drd\theta\\ =\int_0^{2\pi}\frac{1}{8}2sin\theta cos\theta drd\theta\\ =\int_0^{2\pi}\frac{1}{8}sin(2\theta)drd\theta\\ =\frac{1}{8}[\frac{-cos(2\theta)}{2}]_0^{2\pi}\\ =\frac{1}{16}[-1+1]\\ =0∫∫xydxdy=∫02π∫01r3sinθcosθdrdθ=∫02π[4r4]01sinθcosθdrdθ=∫02π41sinθcosθdrdθ=∫02π812sinθcosθdrdθ=∫02π81sin(2θ)drdθ=81[2−cos(2θ)]02π=161[−1+1]=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments