Question #277190

∫ ∫ 𝑥𝑦𝑑𝑥𝑑𝑦 2𝑦


𝑦


2





1
Expert's answer
2021-12-09T16:03:13-0500

In unit circle we need to find the integral value.

xydxdy=02π01r3sinθcosθdrdθ=02π[r44]01sinθcosθdrdθ=02π14sinθcosθdrdθ=02π182sinθcosθdrdθ=02π18sin(2θ)drdθ=18[cos(2θ)2]02π=116[1+1]=0\int \int xydxdy= \int_0^{2\pi}\int_0^1r^3sin\theta cos\theta drd\theta\\ =\int_0^{2\pi}[\frac{r^4}{4}]_0^1sin\theta cos\theta drd\theta\\ =\int_0^{2\pi}\frac{1}{4}sin\theta cos\theta drd\theta\\ =\int_0^{2\pi}\frac{1}{8}2sin\theta cos\theta drd\theta\\ =\int_0^{2\pi}\frac{1}{8}sin(2\theta)drd\theta\\ =\frac{1}{8}[\frac{-cos(2\theta)}{2}]_0^{2\pi}\\ =\frac{1}{16}[-1+1]\\ =0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS