Consider,
∇ ( A ⃗ ⋅ B ⃗ ) = ∑ i ⃗ d d x ( A ⃗ ⋅ B ⃗ ) = ∑ i ⃗ ( d A ⃗ d x ⋅ B ⃗ + A ⃗ ⋅ d B ⃗ d x ) \nabla(\vec{A}\cdot\vec{B})=\sum\vec{i}\frac{d}{dx}(\vec{A}\cdot\vec{B})=\sum\vec{i}(\frac{d\vec{A}}{dx}\cdot\vec{B}+\vec{A}\cdot\frac{d\vec{B}}{dx}) ∇ ( A ⋅ B ) = ∑ i d x d ( A ⋅ B ) = ∑ i ( d x d A ⋅ B + A ⋅ d x d B )
= ∑ i ⃗ ( d A ⃗ d x ⋅ B ⃗ ) + ∑ ( A ⃗ ⋅ d B ⃗ d x ) =\sum\vec{i}(\frac{d\vec{A}}{dx}\cdot\vec{B})+\sum(\vec{A}\cdot\frac{d\vec{B}}{dx}) = ∑ i ( d x d A ⋅ B ) + ∑ ( A ⋅ d x d B ) ..............(i)
Now B ⃗ ( i ⃗ ∗ d A ⃗ d x ) = ( B ⃗ ⋅ d A ⃗ d x ) i ⃗ − ( B ⃗ ⋅ i ⃗ ) d A ⃗ d x \vec{B}(\vec{i}*\frac{d\vec{A}}{dx})=(\vec{B}\cdot\frac{d\vec{A}}{dx})\vec{i}-(\vec{B}\cdot\vec{i})\frac{d\vec{A}}{dx} B ( i ∗ d x d A ) = ( B ⋅ d x d A ) i − ( B ⋅ i ) d x d A
= ( B ⃗ ⋅ d A ⃗ d x ) i ⃗ = B ⃗ ∗ ( i ⃗ ∗ d A ⃗ d x ) + ( B ⃗ ⋅ i ⃗ ) d A ⃗ d x =(\vec{B}\cdot\frac{d\vec{A}}{dx})\vec{i}=\vec{B}*(\vec{i}*\frac{d\vec{A}}{dx})+(\vec{B}\cdot\vec{i})\frac{d\vec{A}}{dx} = ( B ⋅ d x d A ) i = B ∗ ( i ∗ d x d A ) + ( B ⋅ i ) d x d A
∴ ∑ ( B ⃗ ⋅ d A ⃗ d x ) i ⃗ = B ⃗ ∗ ( i ⃗ ∗ d A ⃗ d x ) + ( B ⃗ ⋅ i ⃗ ) d A ⃗ d x \therefore \sum(\vec{B}\cdot\frac{d\vec{A}}{dx})\vec{i}=\vec{B}*(\vec{i}*\frac{d\vec{A}}{dx})+(\vec{B}\cdot\vec{i})\frac{d\vec{A}}{dx} ∴ ∑ ( B ⋅ d x d A ) i = B ∗ ( i ∗ d x d A ) + ( B ⋅ i ) d x d A
= B ⃗ ∗ ∑ ( i ⃗ ∗ d A ⃗ d x ) + ( B ⃗ ⋅ ∑ i ⃗ d d x ) A ⃗ =\vec{B}*\sum(\vec{i}*\frac{d\vec{A}}{dx})+(\vec{B}\cdot\sum\vec{i}\frac{d}{dx})\vec{A} = B ∗ ∑ ( i ∗ d x d A ) + ( B ⋅ ∑ i d x d ) A
= B ⃗ ∗ ( ∇ ∗ A ⃗ ) + ( B ⃗ ⋅ ∇ ) A ⃗ =\vec{B}*(\nabla*\vec{A})+(\vec{B}\cdot\nabla)\vec{A} = B ∗ ( ∇ ∗ A ) + ( B ⋅ ∇ ) A
∴ ∑ i ⃗ ( d A ⃗ d x ⋅ B ⃗ ) = B ⃗ ∗ ( ∇ ∗ A ⃗ ) + ( B ⃗ ⋅ ∇ ) A ⃗ . . . . . . . . . . . . ( i i ) \therefore\sum\vec{i}(\frac{d\vec{A}}{dx}\cdot\vec{B})=\vec{B}*(\nabla*\vec{A})+(\vec{B}\cdot\nabla)\vec{A}............(ii) ∴ ∑ i ( d x d A ⋅ B ) = B ∗ ( ∇ ∗ A ) + ( B ⋅ ∇ ) A ............ ( ii )
Similarly, if we interchange the role of A ⃗ \vec{A} A and B ⃗ \vec{B} B we can prove;
∑ i ⃗ ( A ⃗ ⋅ d B ⃗ d x ) = A ⃗ ∗ ( ∇ ∗ B ⃗ ) + ( A ⃗ ⋅ ∇ ) B ⃗ . . . . . . . . . . . . ( i i i ) \sum\vec{i}(\vec{A}\cdot\frac{d\vec{B}}{dx})=\vec{A}*(\nabla*\vec{B})+(\vec{A}\cdot\nabla)\vec{B}............(iii) ∑ i ( A ⋅ d x d B ) = A ∗ ( ∇ ∗ B ) + ( A ⋅ ∇ ) B ............ ( iii )
Substituting (ii) and (iii) in (i), we get:
∇ ( A ⃗ ⋅ B ⃗ ) = ( B ⃗ ⋅ ∇ ) A ⃗ + ( A ⃗ ⋅ ∇ ) B ⃗ + B ⃗ ∗ ( ∇ ∗ A ⃗ ) + A ⃗ ∗ ( ∇ ∗ A ⃗ ) \nabla(\vec{A}\cdot\vec{B})=(\vec{B}\cdot\nabla)\vec{A}+(\vec{A}\cdot\nabla)\vec{B}+\vec{B}*(\nabla*\vec{A})+\vec{A}*(\nabla*\vec{A}) ∇ ( A ⋅ B ) = ( B ⋅ ∇ ) A + ( A ⋅ ∇ ) B + B ∗ ( ∇ ∗ A ) + A ∗ ( ∇ ∗ A )
Comments