Question #277172

[SADT8] If A

 and B

 are vector fields, prove the following:


∇(AB)=(B⋅∇)A+(A⋅∇)B+B×(∇×A)+A×(∇×B).



1
Expert's answer
2021-12-09T10:24:01-0500

Consider,

(AB)=iddx(AB)=i(dAdxB+AdBdx)\nabla(\vec{A}\cdot\vec{B})=\sum\vec{i}\frac{d}{dx}(\vec{A}\cdot\vec{B})=\sum\vec{i}(\frac{d\vec{A}}{dx}\cdot\vec{B}+\vec{A}\cdot\frac{d\vec{B}}{dx})

=i(dAdxB)+(AdBdx)=\sum\vec{i}(\frac{d\vec{A}}{dx}\cdot\vec{B})+\sum(\vec{A}\cdot\frac{d\vec{B}}{dx}) ..............(i)

Now B(idAdx)=(BdAdx)i(Bi)dAdx\vec{B}(\vec{i}*\frac{d\vec{A}}{dx})=(\vec{B}\cdot\frac{d\vec{A}}{dx})\vec{i}-(\vec{B}\cdot\vec{i})\frac{d\vec{A}}{dx}

=(BdAdx)i=B(idAdx)+(Bi)dAdx=(\vec{B}\cdot\frac{d\vec{A}}{dx})\vec{i}=\vec{B}*(\vec{i}*\frac{d\vec{A}}{dx})+(\vec{B}\cdot\vec{i})\frac{d\vec{A}}{dx}

(BdAdx)i=B(idAdx)+(Bi)dAdx\therefore \sum(\vec{B}\cdot\frac{d\vec{A}}{dx})\vec{i}=\vec{B}*(\vec{i}*\frac{d\vec{A}}{dx})+(\vec{B}\cdot\vec{i})\frac{d\vec{A}}{dx}

=B(idAdx)+(Biddx)A=\vec{B}*\sum(\vec{i}*\frac{d\vec{A}}{dx})+(\vec{B}\cdot\sum\vec{i}\frac{d}{dx})\vec{A}

=B(A)+(B)A=\vec{B}*(\nabla*\vec{A})+(\vec{B}\cdot\nabla)\vec{A}

i(dAdxB)=B(A)+(B)A............(ii)\therefore\sum\vec{i}(\frac{d\vec{A}}{dx}\cdot\vec{B})=\vec{B}*(\nabla*\vec{A})+(\vec{B}\cdot\nabla)\vec{A}............(ii)

Similarly, if we interchange the role of A\vec{A} and B\vec{B} we can prove;

i(AdBdx)=A(B)+(A)B............(iii)\sum\vec{i}(\vec{A}\cdot\frac{d\vec{B}}{dx})=\vec{A}*(\nabla*\vec{B})+(\vec{A}\cdot\nabla)\vec{B}............(iii)

Substituting (ii) and (iii) in (i), we get:

(AB)=(B)A+(A)B+B(A)+A(A)\nabla(\vec{A}\cdot\vec{B})=(\vec{B}\cdot\nabla)\vec{A}+(\vec{A}\cdot\nabla)\vec{B}+\vec{B}*(\nabla*\vec{A})+\vec{A}*(\nabla*\vec{A})

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS