If x(t+y) = t^2 + y^2. Show that (partial x/partial t - partial x/partial y)^2 = 4[1 - partial x/partial t - partial x/partial y]
Differentiate both sides of the equation (1) with respect to "t"
Differentiate both sides of the equation (1) with respect to "y"
"\\dfrac{\\partial x}{\\partial y}=\\dfrac{2y-x}{t+y}"
"\\dfrac{\\partial x}{\\partial t}+\\dfrac{\\partial x}{\\partial y}=\\dfrac{2t+2y-2x}{t+y}"
"\\dfrac{\\partial x}{\\partial t}-\\dfrac{\\partial x}{\\partial y}=\\dfrac{2t-2y}{t+y}"
"1-\\dfrac{\\partial x}{\\partial t}-\\dfrac{\\partial x}{\\partial y}=\\dfrac{t+y-2t-2y+2x}{t+y}"
"=\\dfrac{2x-(t+y)}{t+y}=\\dfrac{2x(t+y)-(t+y)^2}{(t+y)^2}"
"=\\dfrac{2(t^2+y^2)-t^2-2ty-y^2}{(t+y)^2}"
"=\\dfrac{t^2+y^2-2ty}{(t+y)^2}=\\dfrac{(t-y)^2}{(t+y)^2}"
Then
"=4\\cdot\\dfrac{(t-y)^2}{(t+y)^2}=4(1-\\dfrac{\\partial x}{\\partial t}-\\dfrac{\\partial x}{\\partial y})"
Therefore
Comments
Leave a comment