x(t+y)=t2+y2 (1) Differentiate both sides of the equation (1) with respect to t
∂t∂x(t+y)+x=2t Differentiate both sides of the equation (1) with respect to y
∂y∂x(t+y)+x=2y
∂t∂x=t+y2t−x
∂y∂x=t+y2y−x
∂t∂x+∂y∂x=t+y2t+2y−2x
∂t∂x−∂y∂x=t+y2t−2y
1−∂t∂x−∂y∂x=t+yt+y−2t−2y+2x
=t+y2x−(t+y)=(t+y)22x(t+y)−(t+y)2
=(t+y)22(t2+y2)−t2−2ty−y2
=(t+y)2t2+y2−2ty=(t+y)2(t−y)2 Then
(∂t∂x−∂y∂x)2=(t+y2t−2y)2
=4⋅(t+y)2(t−y)2=4(1−∂t∂x−∂y∂x) Therefore
(∂t∂x−∂y∂x)2=4(1−∂t∂x−∂y∂x)
Comments
Leave a comment