Question #270065

If x = t^3 + y^3 where t= a cos v , y= Vsin v. Find dx/dv


1
Expert's answer
2021-11-23T09:21:58-0500
dx/dv=dx/dt(dt/dv)+dx/dy(dy/dv)dx/dv=dx/dt(dt/dv)+dx/dy(dy/dv)

=3t2(asin(v))+3y2(sin(v)+vcos(v))=3t^2\big(-a\sin (v)\big)+3y^2\big(\sin (v)+v\cos(v)\big)

=3a(acos(v))2sin(v)=-3a\big(a\cos(v)\big)^2\sin(v)

+3((vsin(v))2(sin(v)+vcos(v))+3\big((v\sin(v)\big)^2\big(\sin(v)+v\cos(v)\big)

=3a3sin(v)cos2(v)+3v2sin2(v)(sin(v)+vcos(v))=-3a^3\sin(v)\cos^2(v)+3v^2\sin^2(v)\big(\sin(v)+v\cos(v)\big)

Or


x(v)=a3cos3(v)+v3sin3(v)x(v)=a^3\cos^3(v)+v^3\sin^3(v)


dx/dv=3a3sin(v)+cos2(v)dx/dv=-3a^3\sin(v)+\cos^2(v)

+3v2sin3(v)+3v3sin2(v)cos(v)+3v^2\sin^3(v)+3v^3\sin^2(v)\cos(v)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS