Area Between Curves, Volumes and Average Values of Functions:
1 Calculate the area between the parabola π¦=π₯2 and the line π¦=4
2 Derive the formula for the volume of the right-circular cone using a single integral given that π¦=βπβ(π§ββ).
3. Find the average value π(π₯)Μ Μ Μ Μ Μ Μ of π(π₯)=2π₯2+3π₯+3 in the interval [1,4].
1.
"Area=A=\\displaystyle\\int_{-2}^{2}(4-x^2)dx=[4x-\\dfrac{x^3}{3}]\\begin{matrix}\n 2 \\\\\n -2\n\\end{matrix}"
"=8-\\dfrac{8}{3}-(-8+\\dfrac{8\\dfrac{a}{b}}{3})=\\dfrac{32}{3}({units}^2)"
2.
"\ud835\udc66=\u2212\\dfrac{a}{h}(\ud835\udc67\u2212\u210e)"
"V=\\displaystyle\\int_{0}^{h}\\pi(y(z))^2dz=\\displaystyle\\int_{0}^{h}\\pi(\u2212\\dfrac{a}{h}(z-h))^2dz"
"=\\pi \\dfrac{a^2}{h^2}[\\dfrac{(z-h)^3}{3}]\\begin{matrix}\n h \\\\\n 0\n\\end{matrix}=\\pi \\dfrac{a^2}{3h^2}(0+h^3)=\\dfrac{1}{3}\\pi a^2 h({units}^3)"
3.
"=\\dfrac{1}{3}[\\dfrac{2x^3}{3}+\\dfrac{3x^2}{2}+3x]\\begin{matrix}\n 4 \\\\\n 1\n\\end{matrix}"
"=\\dfrac{1}{3}(\\dfrac{128}{3}+24+12-\\dfrac{2}{3}-\\dfrac{3}{2}-3)"
"=\\dfrac{49}{2}"
Comments
Leave a comment