Question #269755

Area Between Curves, Volumes and Average Values of Functions:


1 Calculate the area between the parabola ๐‘ฆ=๐‘ฅ2 and the line ๐‘ฆ=4


2 Derive the formula for the volume of the right-circular cone using a single integral given that ๐‘ฆ=โˆ’๐‘Žโ„Ž(๐‘งโˆ’โ„Ž).



3. Find the average value ๐‘“(๐‘ฅ)ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… of ๐‘“(๐‘ฅ)=2๐‘ฅ2+3๐‘ฅ+3 in the interval [1,4].



1
Expert's answer
2021-11-22T18:21:27-0500

1.


x2=4=>x1=โˆ’2,x2=2x^2=4=>x_1=-2, x_2=2

Area=A=โˆซโˆ’22(4โˆ’x2)dx=[4xโˆ’x33]2โˆ’2Area=A=\displaystyle\int_{-2}^{2}(4-x^2)dx=[4x-\dfrac{x^3}{3}]\begin{matrix} 2 \\ -2 \end{matrix}

=8โˆ’83โˆ’(โˆ’8+8ab3)=323(units2)=8-\dfrac{8}{3}-(-8+\dfrac{8\dfrac{a}{b}}{3})=\dfrac{32}{3}({units}^2)

2.

๐‘ฆ=โˆ’ah(๐‘งโˆ’h)๐‘ฆ=โˆ’\dfrac{a}{h}(๐‘งโˆ’โ„Ž)

V=โˆซ0hฯ€(y(z))2dz=โˆซ0hฯ€(โˆ’ah(zโˆ’h))2dzV=\displaystyle\int_{0}^{h}\pi(y(z))^2dz=\displaystyle\int_{0}^{h}\pi(โˆ’\dfrac{a}{h}(z-h))^2dz

=ฯ€a2h2[(zโˆ’h)33]h0=ฯ€a23h2(0+h3)=13ฯ€a2h(units3)=\pi \dfrac{a^2}{h^2}[\dfrac{(z-h)^3}{3}]\begin{matrix} h \\ 0 \end{matrix}=\pi \dfrac{a^2}{3h^2}(0+h^3)=\dfrac{1}{3}\pi a^2 h({units}^3)

3.


fave=14โˆ’1=โˆซ14(2x2+3x+3)dxf_{ave}=\dfrac{1}{4-1}=\displaystyle\int_{1}^{4}(2x^2+3x+3)dx

=13[2x33+3x22+3x]41=\dfrac{1}{3}[\dfrac{2x^3}{3}+\dfrac{3x^2}{2}+3x]\begin{matrix} 4 \\ 1 \end{matrix}

=13(1283+24+12โˆ’23โˆ’32โˆ’3)=\dfrac{1}{3}(\dfrac{128}{3}+24+12-\dfrac{2}{3}-\dfrac{3}{2}-3)

=492=\dfrac{49}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS