Question #269600

Find the surface integral of the vector field 𝑭(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧) over the part of the paraboloid 𝑧 = 1 − 𝑥 2 − 𝑦 2 with 𝑧 ≥ 0 and having normal pointing upwards. Hint: take 𝑥 and 𝑦 as independent parameters


1
Expert's answer
2021-11-22T16:25:28-0500

The surface S can be represented by:

r(x,y)=xi+yj+(1x2y2)k, 1x1,1y1r(x, y) = x i + y j + (1 − x^ 2 − y ^2 ) k,\ −1 ≤ x ≤ 1, −1 ≤ y ≤ 1

rx=i2xk,ry=j2ykr_x = i − 2x k , r_y = j − 2y k

rx×ry=ijk102x012y=2xi+2yj+kr_x × r_y=\begin{vmatrix} i & j&k \\ 1 & 0&-2x\\ 0 & 1&-2y \end{vmatrix}=2xi+2yj+k


SFndS=F(rx×ry)dA=1111(2x2+2y2+1x2y2)dxdy=\iint_SF\cdot ndS=\iint F\cdot (r_x × r_y)dA=\int^1_{-1} \int^1_{-1}(2x^2+2y^2+1 − x^ 2 − y ^2)dxdy=


=1111(x2+y2+1)dxdy=11(2/3+2y2+2)dy==\int^1_{-1} \int^1_{-1}(x^2+y^2+1 )dxdy=\int^1_{-1} (2/3+2y^2+2)dy=


=4/3+4/3+4=20/3=4/3+4/3+4=20/3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS