Find the surface integral of the vector field π(π₯, π¦, π§) = (π₯, π¦, π§) over the part of the paraboloid π§ = 1 β π₯ 2 β π¦ 2 with π§ β₯ 0 and having normal pointing upwards. Hint: take π₯ and π¦ as independent parameters
The surface S can be represented by:
"r(x, y) = x i + y j + (1 \u2212 x^ 2 \u2212 y ^2 ) k,\\ \u22121 \u2264 x \u2264 1, \u22121 \u2264 y \u2264 1"
"r_x = i \u2212 2x k , r_y = j \u2212 2y k"
"r_x \u00d7 r_y=\\begin{vmatrix}\n i & j&k \\\\\n 1 & 0&-2x\\\\\n0 & 1&-2y\n\\end{vmatrix}=2xi+2yj+k"
"\\iint_SF\\cdot ndS=\\iint F\\cdot (r_x \u00d7 r_y)dA=\\int^1_{-1} \\int^1_{-1}(2x^2+2y^2+1 \u2212 x^ 2 \u2212 y ^2)dxdy="
"=\\int^1_{-1} \\int^1_{-1}(x^2+y^2+1 )dxdy=\\int^1_{-1} (2\/3+2y^2+2)dy="
"=4\/3+4\/3+4=20\/3"
Comments
Leave a comment