Find the surface integral of the vector field 𝑭(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧) over the part of the paraboloid 𝑧 = 1 − 𝑥 2 − 𝑦 2 with 𝑧 ≥ 0 and having normal pointing upwards. Hint: take 𝑥 and 𝑦 as independent parameters
The surface S can be represented by:
r(x,y)=xi+yj+(1−x2−y2)k, −1≤x≤1,−1≤y≤1r(x, y) = x i + y j + (1 − x^ 2 − y ^2 ) k,\ −1 ≤ x ≤ 1, −1 ≤ y ≤ 1r(x,y)=xi+yj+(1−x2−y2)k, −1≤x≤1,−1≤y≤1
rx=i−2xk,ry=j−2ykr_x = i − 2x k , r_y = j − 2y krx=i−2xk,ry=j−2yk
rx×ry=∣ijk10−2x01−2y∣=2xi+2yj+kr_x × r_y=\begin{vmatrix} i & j&k \\ 1 & 0&-2x\\ 0 & 1&-2y \end{vmatrix}=2xi+2yj+krx×ry=∣∣i10j01k−2x−2y∣∣=2xi+2yj+k
∬SF⋅ndS=∬F⋅(rx×ry)dA=∫−11∫−11(2x2+2y2+1−x2−y2)dxdy=\iint_SF\cdot ndS=\iint F\cdot (r_x × r_y)dA=\int^1_{-1} \int^1_{-1}(2x^2+2y^2+1 − x^ 2 − y ^2)dxdy=∬SF⋅ndS=∬F⋅(rx×ry)dA=∫−11∫−11(2x2+2y2+1−x2−y2)dxdy=
=∫−11∫−11(x2+y2+1)dxdy=∫−11(2/3+2y2+2)dy==\int^1_{-1} \int^1_{-1}(x^2+y^2+1 )dxdy=\int^1_{-1} (2/3+2y^2+2)dy==∫−11∫−11(x2+y2+1)dxdy=∫−11(2/3+2y2+2)dy=
=4/3+4/3+4=20/3=4/3+4/3+4=20/3=4/3+4/3+4=20/3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments