If the sum of the surface areas of a sphere and a cube is fixed, what is the ratio of
the radius of the sphere to the edge of the cube when the sum of their volumes is
least
sum of the surface areas:
S=4πr2+6a2S=4\pi r^2+6a^2S=4πr2+6a2
edge of the cube:
a=S−4πr26a=\sqrt{\frac{S-4\pi r^2}{6}}a=6S−4πr2
sum of volumes:
V=4πr3/3+a3=4πr3/3+(S−4πr26)3/2V=4\pi r^3/3+a^3=4\pi r^3/3+(\frac{S-4\pi r^2}{6})^{3/2}V=4πr3/3+a3=4πr3/3+(6S−4πr2)3/2
dVdr=4πr2−328πr6(S−4πr26)1/2=0\frac{dV}{dr}=4\pi r^2-\frac{3}{2}\frac{8\pi r}{6}(\frac{S-4\pi r^2}{6})^{1/2}=0drdV=4πr2−2368πr(6S−4πr2)1/2=0
4πr−328π6a=04\pi r-\frac{3}{2}\frac{8\pi }{6}a=04πr−2368πa=0
r/a=328π6⋅4π=1/2r/a=\frac{3}{2}\frac{8\pi }{6\cdot4\pi}=1/2r/a=236⋅4π8π=1/2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments