The graph of the parametric equations is called a cycloid.
x=θ-sinθ and y=1-cosθ for 0≤θ≤2π
(a) find dy/dx
(b) find an equation of the tangent to the cycloid at the point where θ=π/3
(c) at what point is the tangent horizontal?
(d) graph the cycloid and the tangent lines in parts (b) and (c)
a)
"dy\/dx=\\frac{dy}{d\\theta}\\frac{d\\theta}{dx}"
"dy\/d\\theta=sin\\theta"
"dx\/d\\theta=1-cos\\theta"
"dy\/dx=\\frac{sin\\theta}{1-cos\\theta}"
b)
equation of the tangent:
"y-y_0=f'(x_0)(x-x_0)"
then, θ=π/3:
"1-cos\u03b8-(1-cos(\\pi\/3))=\\frac{sin(\\pi\/3)}{1-cos(\\pi\/3)}(\u03b8-sin\u03b8-(\\pi\/3-sin(\\pi\/3)))"
"1\/2-cos\u03b8=\\sqrt3(\u03b8-sin\u03b8-\\pi\/3+\\sqrt3\/2)"
"cos\u03b8+\\sqrt3(\u03b8-sin\u03b8)=\\pi\/\\sqrt3-1"
c)
the tangent horizontal if "f'(x)=0"
so,
"\\frac{sin\\theta}{1-cos\\theta}=0"
"sin\\theta=0"
"cos\\theta\\neq 1"
"\\theta=\\pi"
"y(\\pi)=2,x(\\pi)=\\pi"
d)
Comments
Leave a comment