Answer to Question #264741 in Calculus for JaytheCreator

Question #264741

Question 2

(i) Find the volume integral of the scalar field 𝜙(𝑥, 𝑦, 𝑧) = 𝑥^2 + 𝑦^2 + 𝑧^2 over the region 𝑉 specified by 𝑥 ∈ [0,1], 𝑦 ∈ [1,2], and 𝑧 ∈ [0,3].

(ii) Find the gradient of the scalar field 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 and evaluate it at the point (1,2,3). Hence, find the directional derivative of 𝑓 at this point in the direction of the vector (1,1,0).


1
Expert's answer
2021-11-17T17:15:09-0500

I

X,y,z=x2+y2+z2X,y,z=x^2+y^2+z^2\\

Region of integration is given by E(X,y,z): 0<X<1. 1<y<2. 0<y<2 0<z<3

Volume

(x2+y2+z2)dv\iiint(x^2+y^2+z^2)dv

x=01y=12z=03(x2+y2+z2)dzdydx\intop_{x=0}^{1}\intop_{y=1}^{2}\intop_{z=0}^{3}(x^2+y^2+z^2)dzdydx\\

0112(x2z+y2z+z33)dydx\intop_{0}^{1}\intop_{1}^{2}(x^2z+y^2z+\frac{z^3}{3})dydx

0112(3x2+3y2z+9)dydx\intop_{0}^{1}\intop_{1}^{2}(3x^2+3y^2z+9)dydx

01(3x2y+y3+9y)2dx01[(6x2+8+18)(3x2+1+9)]dx01(3x2+16)dx\intop_{0}^{1}(3x^2y+y^3+9y)^2dx\\ \intop_{0}^{1}[(6x^2+8+18)-(3x^2+1+9)]dx\\ \intop_{0}^{1}(3x^2+16)dx\\

01(3x2+16)dx1+1617\int_0^1(3x^2+16)dx\\1+16\\17


ii

gradient vector is

<yz,xz,xy><yz,xz,xy>

required gradient vector will be

(1,2,3)=<2×3,1×3,1×2>(1,2,3)=<2\times 3,1\times3,1\times2>

<6,3,2><6,3,2>

the direction vector is given as

=1,1,01+1+0<12,12,0>=\frac{1,1,0}{\sqrt{1+1+0}}\\<\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0>

the required direction vector will be

du f=f(1,2,3)

<6,3,2><6,3,2> .<12,12,0><\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0>

62+32+092\frac{6}{\sqrt{2}}+\frac{3}{\sqrt{2}}+0\\\frac{9}{\sqrt{2}}

Required direction 922\frac{9}{2}\sqrt{2}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment