Answer to Question #264907 in Calculus for tina

Question #264907

Verify that the function 𝑦 = 𝑐1𝑒 (−𝑘+2𝑖)𝑥 + 𝑐2𝑒 (−𝑘−2𝑖)𝑥 is a solution to 𝑦 ′′ + 2𝑘𝑦 ′ + (𝑘 2 + 4)𝑦 = 0.


1
Expert's answer
2021-11-16T09:57:58-0500

𝑦=𝑐1𝑒(𝑘+2𝑖)𝑥+𝑐2𝑒(𝑘2𝑖)𝑥........(1)solution to𝑦′′+2𝑘𝑦+(𝑘2+4)𝑦=0.𝑦 = 𝑐_1𝑒 ^{(−𝑘+2𝑖)𝑥} + 𝑐_2𝑒 ^{(−𝑘−2𝑖)𝑥} ........(1)\\ solution \space to\\ 𝑦 ^{′′} + 2𝑘𝑦 ^{′} + (𝑘^ 2 + 4)𝑦 = 0.


𝑦=𝑐1𝑒(𝑘+2𝑖)𝑥(𝑘+2𝑖)+𝑐2𝑒(𝑘2𝑖)𝑥(𝑘2𝑖)𝑦′′=𝑐1𝑒(𝑘+2𝑖)𝑥(𝑘+2𝑖)2+𝑐2𝑒(𝑘2𝑖)𝑥(𝑘2𝑖)2𝑦^{′} = 𝑐_1𝑒 ^{(−𝑘+2𝑖)𝑥}(−𝑘+2𝑖) + 𝑐_2𝑒 ^{(−𝑘−2𝑖)𝑥}(−𝑘-2𝑖)\\𝑦^{′′} = 𝑐_1𝑒 ^{(−𝑘+2𝑖)𝑥}(−𝑘+2𝑖)^2 + 𝑐_2𝑒 ^{(−𝑘−2𝑖)𝑥}(−𝑘-2𝑖)^2


𝑐1𝑒(𝑘+2𝑖)𝑥(𝑘+2𝑖)2+𝑐2𝑒(𝑘2𝑖)𝑥(𝑘2𝑖)2+2k(𝑐1𝑒(𝑘+2𝑖)𝑥(𝑘+2𝑖)+𝑐2𝑒(𝑘2𝑖)𝑥(𝑘+2𝑖)+(k2+4)𝑐1𝑒(𝑘+2𝑖)𝑥+𝑐2𝑒(𝑘2𝑖)𝑐_1𝑒 ^{(−𝑘+2𝑖)𝑥}(−𝑘+2𝑖)^2 + 𝑐_2𝑒 ^{(−𝑘−2𝑖)𝑥}(−𝑘-2𝑖)^2+ 2k(𝑐_1𝑒 ^{(−𝑘+2𝑖)𝑥}(−𝑘+2𝑖)+ 𝑐_2𝑒 ^{(−𝑘-2𝑖)𝑥}(−𝑘+2𝑖)+(k^2+4)𝑐_1𝑒 ^{(−𝑘+2𝑖)𝑥}+𝑐_2𝑒 ^{(−𝑘-2𝑖)}


𝑐1(𝑘+2𝑖)2𝑒(𝑘+2𝑖)𝑥+𝑐2𝑒(𝑘2𝑖)𝑥)(k2i)2+2k(𝑘2𝑖)𝑐1𝑒(𝑘+2𝑖)𝑥+2k(𝑘2𝑖)𝑐2𝑒(𝑘2𝑖)𝑥+(𝑘2+4)𝑐1𝑒(𝑘+2𝑖)𝑥+(𝑘2+4)𝑐2𝑒(𝑘+2𝑖)k𝑐_1 (−𝑘+2𝑖)^2 𝑒^{ (−𝑘+2𝑖)𝑥}+ 𝑐_2𝑒 ^{(−𝑘-2𝑖)𝑥)}(-k-2i)^2 + 2k(−𝑘−2𝑖) 𝑐_1𝑒 ^{(−𝑘+2𝑖)𝑥 }+ 2k (−𝑘−2𝑖) 𝑐_2𝑒^{ (−𝑘-2𝑖)𝑥} + (𝑘^2+4) 𝑐_1𝑒^{ (−𝑘+2𝑖)𝑥 }+ (𝑘^2+4) 𝑐_2𝑒^ {(−𝑘+2𝑖)k}


hence verified




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment