Answer to Question #264742 in Calculus for JaytheCreator

Question #264742

Question 3

Determine the length of the curve 𝑥 = 𝑦^2 /2 for 0 ≤ 𝑥 ≤ 1/2 . Assume 𝑦 positive.


1
Expert's answer
2022-01-10T17:56:05-0500

L=1+(y)2dxy=2xy=12xL=0121+12xdxL= \int \sqrt{1+(y')^2}dx\\ y=\sqrt{2x}\\ y'=\frac{1}{\sqrt{2x}}\\ L= \int_0^\frac{1}{2}\sqrt{1+\frac{1}{2x}}dx\\

This can also be written as L=01212x+1dxL= \int_0^\frac{1}{2}\sqrt{\frac{1}{2x}+1}dx\\

we apply linearity

121x+2dx\frac{1}{\sqrt{2}}\int \sqrt{\frac{1}{x}+2}dx\\

let u = 1x+2\sqrt{\frac{1}{x}+2}\\ , dx = -21x+2x2du,dx=2u2(u22)du\sqrt{\frac{1}{x}+2x^2}du, dx=-2\int \frac{u^2}{(u^2-2)}du\\

we integrate u2(u22)du=(u22(u22)2+2(u22)2)du=\int \frac{u^2}{(u^2-2)}du = \int (\frac{u^2-2}{(u^2-2)^2}+\frac{2}{(u^2-2)^2})du=\\

(1(u22)+2(u22)2)du\int (\frac{1}{(u^2-2)}+\frac{2}{(u^2-2)^2})du\\

we split and integrate differently.

(1(u22)du    Ln(u2)232Ln(u+2)232\int (\frac{1}{(u^2-2)}du \implies \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u+\sqrt{2})}{2^{\frac{3}{2}}}

also

2(u22)2du    (1(u22)du    Ln(u2)232Ln(u2)23214(u+2)14(u2)\int\frac{2}{(u^2-2)^2}du \implies \int (\frac{1}{(u^2-2)}du \implies \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}} - \frac{1}{4(u+\sqrt{2})}- \frac{1}{4(u-\sqrt{2})}\\

but substituting the solution of the integrations back, we get

Ln(u2)232Ln(u+2)232+Ln(u2)232Ln(u2)23214(u+2)14(u2)\frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u+\sqrt{2})}{2^{\frac{3}{2}}}+ \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}} - \frac{1}{4(u+\sqrt{2})}- \frac{1}{4(u-\sqrt{2})}

recall, u= 1x+2\sqrt{\frac{1}{x}+2}\\ then we substitute u in terms of x back and introduce the lower and upper limits

Ln(u2)232Ln(u+2)232+Ln(u2)232Ln(u2)23214(u+2)14(u2)012\frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u+\sqrt{2})}{2^{\frac{3}{2}}}+ \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}} - \frac{1}{4(u+\sqrt{2})}- \frac{1}{4(u-\sqrt{2})}|_0^\frac{1}{2}

We have.

12+Ln(2+1)Ln(21)4\frac{1}{\sqrt{2}}+\frac{Ln(\sqrt{2}+1)-Ln(\sqrt{2}-1)}{4}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment