Question 3
Determine the length of the curve ๐ฅ = ๐ฆ^2 /2 for 0 โค ๐ฅ โค 1/2 . Assume ๐ฆ positive.
"L= \\int \\sqrt{1+(y')^2}dx\\\\\ny=\\sqrt{2x}\\\\\ny'=\\frac{1}{\\sqrt{2x}}\\\\\nL= \\int_0^\\frac{1}{2}\\sqrt{1+\\frac{1}{2x}}dx\\\\"
This can also be written asย "L= \\int_0^\\frac{1}{2}\\sqrt{\\frac{1}{2x}+1}dx\\\\"
we apply linearity
"\\frac{1}{\\sqrt{2}}\\int \\sqrt{\\frac{1}{x}+2}dx\\\\"
let u =ย "\\sqrt{\\frac{1}{x}+2}\\\\"ย , dx = -2"\\sqrt{\\frac{1}{x}+2x^2}du, dx=-2\\int \\frac{u^2}{(u^2-2)}du\\\\"
we integrateย "\\int \\frac{u^2}{(u^2-2)}du = \\int (\\frac{u^2-2}{(u^2-2)^2}+\\frac{2}{(u^2-2)^2})du=\\\\"
"\\int (\\frac{1}{(u^2-2)}+\\frac{2}{(u^2-2)^2})du\\\\"
we split and integrate differently.
"\\int (\\frac{1}{(u^2-2)}du \\implies \\frac{Ln(u-\\sqrt{2})}{2^{\\frac{3}{2}}}- \\frac{Ln(u+\\sqrt{2})}{2^{\\frac{3}{2}}}"
also
"\\int\\frac{2}{(u^2-2)^2}du \\implies \\int (\\frac{1}{(u^2-2)}du \\implies \\frac{Ln(u-\\sqrt{2})}{2^{\\frac{3}{2}}}- \\frac{Ln(u-\\sqrt{2})}{2^{\\frac{3}{2}}} - \\frac{1}{4(u+\\sqrt{2})}- \\frac{1}{4(u-\\sqrt{2})}\\\\"
but substituting the solution of the integrations back, we get
"\\frac{Ln(u-\\sqrt{2})}{2^{\\frac{3}{2}}}- \\frac{Ln(u+\\sqrt{2})}{2^{\\frac{3}{2}}}+ \\frac{Ln(u-\\sqrt{2})}{2^{\\frac{3}{2}}}- \\frac{Ln(u-\\sqrt{2})}{2^{\\frac{3}{2}}} - \\frac{1}{4(u+\\sqrt{2})}- \\frac{1}{4(u-\\sqrt{2})}"
recall, u=ย "\\sqrt{\\frac{1}{x}+2}\\\\"ย then we substitute u in terms of x back and introduce the lower and upper limits
"\\frac{Ln(u-\\sqrt{2})}{2^{\\frac{3}{2}}}- \\frac{Ln(u+\\sqrt{2})}{2^{\\frac{3}{2}}}+ \\frac{Ln(u-\\sqrt{2})}{2^{\\frac{3}{2}}}- \\frac{Ln(u-\\sqrt{2})}{2^{\\frac{3}{2}}} - \\frac{1}{4(u+\\sqrt{2})}- \\frac{1}{4(u-\\sqrt{2})}|_0^\\frac{1}{2}"
We have.
"\\frac{1}{\\sqrt{2}}+\\frac{Ln(\\sqrt{2}+1)-Ln(\\sqrt{2}-1)}{4}"
Comments
Leave a comment