(a) ∫ 0 2 2 x − x 2 d x \smallint_{0}^2 2x-x^2dx ∫ 0 2 2 x − x 2 d x
= [ x 2 − x 3 3 ] 0 2 =[x^2-\frac{x^3}{3}]_{0}^2 = [ x 2 − 3 x 3 ] 0 2
= 4 − 8 3 =4-\frac{8}{3} = 4 − 3 8
= 4 3 =\frac{4}{3} = 3 4
(b)
calculate half of the area found in part A
= 4 3 ( 1 2 ) = 2 3 =\frac{4}{3}(\frac{1}{2})
\\=\frac{2}{3} = 3 4 ( 2 1 ) = 3 2
For the function y = mx, one of the points is the origin (0,0). we need to find the other point that intersects the curve. proceed as follows
m x = 2 x − x 2 x 2 + m x − 2 x = 0 x 2 + x ( m − 2 ) = 0 x = 0 o r x = 2 − m mx=2x-x^2\\x^2+mx-2x=0\\x^2+x(m-2)=0
\\x=0 \ or \ x=2-m m x = 2 x − x 2 x 2 + m x − 2 x = 0 x 2 + x ( m − 2 ) = 0 x = 0 or x = 2 − m
find x value in terms of m where curves intersect
∫ 0 2 − m ( 2 x − x 2 − m x ) d x = 2 3 \smallint_{0}^{2-m}(2x-x^2-mx)dx=\frac{2}{3} ∫ 0 2 − m ( 2 x − x 2 − m x ) d x = 3 2
[ x 2 − x 3 3 − m x 2 2 ] 0 2 − m [x^2-\frac{x^3}{3}-\frac{mx^2}{2}]_{0}^{2-m} [ x 2 − 3 x 3 − 2 m x 2 ] 0 2 − m
( 2 − m ) 2 − ( 2 − m ) 3 3 − m ( 2 − m ) 3 2 = 2 3 (2-m)^2-\frac{(2-m)^3}{3}-\frac{m(2-m)^3}{2}=\frac{2}{3} ( 2 − m ) 2 − 3 ( 2 − m ) 3 − 2 m ( 2 − m ) 3 = 3 2
( 2 − m ) 2 [ 3 3 − 2 3 + 2 m 6 − 3 m 6 = 2 3 (2-m)^2[\frac{3}{3}-\frac{2}{3}+\frac{2m}{6}-\frac{3m}{6}=\frac{2}{3} ( 2 − m ) 2 [ 3 3 − 3 2 + 6 2 m − 6 3 m = 3 2
1 6 ( 2 − m ) 2 [ 2 − m ] = 2 3 \frac{1}{6}(2-m)^2[2-m]=\frac{2}{3} 6 1 ( 2 − m ) 2 [ 2 − m ] = 3 2
1 6 ( 2 − m ) 3 = 2 3 \frac{1}{6}(2-m)^3=\frac{2}{3} 6 1 ( 2 − m ) 3 = 3 2
Evaluate and solve m
( 2 − m ) 3 = 2 3 ( 6 ) (2-m)^3=\frac{2}{3}(6) ( 2 − m ) 3 = 3 2 ( 6 )
( 2 − m ) = 4 3 (2-m)=\sqrt[3]{4} ( 2 − m ) = 3 4
m = 2 − 4 3 m=2-\sqrt[3]{4} m = 2 − 3 4
Comments