Find y'. Simplify all answers.
a. x²y + xy² - y³ + x² = 2
b. sqrt(2xy) + y²-xy²=1
c. sinx + cosy = sinxcosy
d. y = x^x^x
e. y = (sinx)^2x
f. ln(x²+y²) + 2arctan(y/x) = 1
g. (x+y)³ = (x-y)²
a.
"2xy+x^2y'+y^2+2xyy'-3y^2y'+2x=0"
"y'=\\dfrac{2xy+y^2+2x}{3y^2-2xy-x^2}"
b.
"\\sqrt{\\dfrac{y}{2x}}+\\sqrt{\\dfrac{x}{2y}}y'+2yy'-y^2-2xyy'=0"
"y'=\\dfrac{y^2-\\sqrt{\\dfrac{y}{2x}}}{\\sqrt{\\dfrac{x}{2y}}+2y-2xy}"
c.
"\\cos x-y'\\sin y=\\cos x\\cos y-y'\\sin x \\sin y"
"y'=\\dfrac{\\cos x\\cos y-\\cos x}{\\sin x \\sin y-\\sin y}"
d.
"\\ln y=x^x\\ln x"
"\\dfrac{\\ln y}{\\ln x}=x^x"
"\\ln(\\dfrac{\\ln y}{\\ln x})=x\\ln x"
"(\\ln(\\ln y)-\\ln(\\ln x))'=(x\\ln x)'"
"\\dfrac{1}{y\\ln y}y'-\\dfrac{1}{x\\ln x}=\\ln x+1"
"y'=y\\ln y(\\dfrac{1}{x\\ln x}+\\ln x+1)"
"y'=x^{x^x}x^x\\ln x(\\dfrac{1}{x\\ln x}+\\ln x+1)"
e.
"(\\ln y)'=(2x\\ln(\\sin x))'"
"\\dfrac{y'}{y}=2\\ln(\\sin x)+2x(\\dfrac{\\cos x}{\\sin x})"
"y'=2(\\sin x)^{2x}(\\ln(\\sin x)+x\\cot x)"
f)
"\\dfrac{2x+2yy'}{x^2+y^2}+\\dfrac{2}{1+y^2\/x^2}(\\dfrac{y'}{x}-\\dfrac{y}{x^2})=0"
"x+yy'+xy'-y=0"
"y'=\\dfrac{y-x}{y+x}"
g)
"3(x+y)^2(1+y')=2(x-y)(1-y')"
"y'=\\dfrac{2(x-y)-3(x+y)^2}{3(x+y)^2+2(x-y)}"
Comments
Leave a comment