Can you kindly explain a little bit so that I can try to solve other problems. Thank you so much.
use the Leibniz sign.
1. "lim_{k \\to \\text{\\oe}} {\\alpha}^{k^k}\/2=0"
if "\\alpha<1" then the row converges
"lim_{k \\to \\text{\\oe}} {\\alpha}^{k^k}\/2=\\text {\\oe}"
If "\\alpha>1" then the row diverges.
"lim_{k \\to \\text{\\oe}} |{\\alpha}^{k^k}\/2|=\\text {\\oe}"
If "\\alpha<0" the series converges conditionally.
"lim_{k \\to \\text{\\oe}} |{\\alpha}^{k^k}\/2|=0"
If "0< \\alpha<1"
the series converges absolutely
2. "lim_{k \\to \\text{\\oe}} {\\alpha}^{k}\/k=0"
If "\\alpha<1"
then the row converges absolutely
"lim_{k \\to \\text{\\oe}} {\\alpha}^{k}\/k=\\text {\\oe}"
If "\\alpha>1" then the row diverges
Comments
Leave a comment