Question #262602

3.Using the definition of "Big-O" determine if each of the following functions, f(x)=(xlogx)^2−4 and g(x)=5x^5 are O(x^4) and prove your claims.


1
Expert's answer
2021-11-08T21:20:07-0500

Definition: Let ff and gg be real-valued functions. We say that f(x)f(x) is O(g(x))O(g(x)) is there exists two numbers CC and kk such that f(x)Cg(x)x>k.|f(x)| ≤ C|g(x)| \forall x > k. or in limit terms limx+f(x)g(x)<C.\lim\limits_{x\to+\infty}|\frac{f(x)}{g(x)}|<C.

Let's consider limx+(xlogx)24x4=limx+log2xx2limx+4x4=0\lim\limits_{x\to+\infty}\frac{(xlogx)^2−4}{x^4}=\lim\limits_{x\to+\infty}\frac{log^2x}{x^2}-\lim\limits_{x\to+\infty}\frac{4}{x^4}=0 . So f(x)=(xlogx)24f(x)=(xlogx)^2−4 is o(x4).o(x^4).

Let's consider limx+5x5x4=limx+5x=+.\lim\limits_{x\to+\infty}\frac{5x^5}{x^4}=\lim\limits_{x\to+\infty}5x=+\infty. So for all C k5x5>Cx4\exist k |5x^5|>C |x^4| for all x>kx>k . So, g(x)=5x5g(x)=5x^5 is not an O(x4)O(x^4) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS