The ends and sides of a thin copper bar (𝛼 2 = 1.14) of length 2 are insulated so that no heat can pass through them. Find the temperature 𝑢(𝑥,𝑡) in the bar if initially 𝑢(𝑥, 0) = { 60𝑥 0 < 𝑥 < 1 60(2 − 𝑥) 1 ≤ 𝑥 < 2
The heat equation;
"\\frac{\\delta u}{\\delta t}=\\alpha^2\\frac{\\delta^2u}{\\delta x^2}......(1)"
The generalized solution of the equation is;
"u(x,t)=(Acos\\lambda x+Bsin\\lambda x)e^{-\\delta ^2\\lambda^2t}.......(2)"
The boundary conditions are;
"(i)u(0,t)=0"
"(ii)u(2,t)=0"
"u(x,0)=60x;0<x<1"
"u(x,0)=60(2-x);1\\leq x<2"
Applying condition (i) in (2),we have;
"u(0,t)=Ae^{-\\alpha^2\\lambda^2t}"
Hence ;
A=0
Equation (2) becomes;
"u(x,t)=Bsin\\lambda x)e^{-\\alpha^2\\lambda^2t}" ......(2a)
Apply condition (ii) into (2a),we have;
"0=Bsin(2\\lambda)e^{-\\alpha^2\\lambda^2t}"
Take ;
"2\\lambda=n\u03c0" ; "\\lambda=\\frac{n\u03c0}{x}"
By substitution;
"u(x,t)=B_nsin(\\frac{n\u03c0}{2}x)e^{\\frac{-\\alpha^2n^2\u03c0^2}{4}t}"
The most general solution of the above equation is a series sum (n is an integer)
"u(x,t)=\\displaystyle\\sum_{n=1}^{\\infin}B_nsin\\frac{n\u03c0x}{2}e^{\\frac{-1.14n^2\u03c0^2t}{4}}...(3)"
Using half ranger sin Fourier series;
"B_n=\\frac{2}{l}[\\int f(x)sin\\frac{n\u03c0x}{2}dx]"
"B_n=\\int_0^160xsin\\frac{n\u03c0x}{2}dx+\\int_1^260(2-x)sin\\frac{n\u03c0x}{2}dx"
Integrate by parts and simplify;
"B_n=\\frac{2}{n\u03c0}"
Substitute "B_n" into (3);
"u(x,t)=\\displaystyle\\sum_{n=1}^{\\infin}\\frac{2}{n\u03c0}sin\\frac{n\u03c0x}{2}e^{\\frac{-1.14n^2\u03c0^2t}{4}}"
Comments
Leave a comment