3)
dxdy=12dxde−2x=12dxde−2x×dxd(2−x) (chain rule to differentiate on)
=12×e2−x×2−1dxdy=−62−x (equation of the radiant)
at x=2,dxdy=−6e2−2=e−6
at x=4,dxdy=−6e2−4=e2−6
gradient at x=2 is e−6
gradient at x=4 is e2−6
4)
dxdy=10dxdlog(3x)=10×ln(10)1×3x1×3×1dxdy=xln(10)10 (chain rule to differentiate on)
dxdy=xln(10)10 (equation of the radiant)
at x=2,dxdy=2ln(10)10=ln(10)5
at x=8,dxdy=8ln(10)10=4ln(10)5
gradient at x=2 is ln(10)5
gradient at x=8 is 4ln(10)5
Comments