Question #260843

3) The equation for the instantaneous voltage across a discharging capacitor is given by the equation

𝑦 = 12𝑒 ^-x/2

a) Differentiate the function to find an equation for the gradient and calculate two gradients at x = 2 and x = 4.


4)

𝑦 = 10 𝑙𝑜𝑔3x

a)Differentiate the function to find an equation for the gradient and calculate two gradients at x = 2 and x = 8.


1
Expert's answer
2021-11-04T19:24:09-0400

3)

dydx=12ddxex2=12ddxex2×ddx(x2)\frac{dy}{dx}=12\frac{d}{dx}e^{-\frac{x}{2}}\\=12\frac{d}{dx}e^{-\frac{x}{2}}\times \frac{d}{dx}(\frac{-x}{2}) (chain rule to differentiate on)


=12×ex2×12dydx=6x2=12\times e^{\frac{-x}{2}}\times \frac{-1}{2}\\\frac{dy}{dx}=-6^{\frac{-x}{2}} (equation of the radiant)


at x=2,dydx=6e22=6e\frac{dy}{dx}=-6e^{\frac{-2}{2}}=\frac{-6}{e}\\

at x=4,dydx=6e42=6e2\frac{dy}{dx}=-6e^{\frac{-4}{2}}=\frac{-6}{e^2}\\

gradient at x=2 is 6e\frac{-6}{e}\\

gradient at x=4 is 6e2\frac{-6}{e^2}\\

4)

dydx=10ddxlog(3x)=10×1ln(10)×13x×3×1dydx=10xln(10)\frac{dy}{dx}=10\frac{d}{dx}log(3x)\\=10\times\frac{1}{ln(10)}\times \frac{1}{3x}\times 3\times 1\\\frac{dy}{dx}=\frac{10}{xln(10)} (chain rule to differentiate on)


dydx=10xln(10)\frac{dy}{dx}=\frac{10}{xln(10)} (equation of the radiant)


at x=2,dydx=102ln(10)=5ln(10)\frac{dy}{dx}=\frac{10}{2ln(10)}=\frac{5}{ln(10)}

at x=8,dydx=108ln(10)=54ln(10)\frac{dy}{dx}=\frac{10}{8ln(10)}=\frac{5}{4ln(10)}

gradient at x=2 is 5ln(10)\frac{5}{ln(10)}\\

gradient at x=8 is 54ln(10)\frac{5}{4ln(10)}\\



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS