Prove that if f is continuous, then:
∫ (x>0) f(u)(x-u).du= ∫ (x>0) ( ∫ (u>0) f(t) dt) du.
let
"g(x)=\\displaystyle{\\int ^x_0}f(u)(x-u)du-\\displaystyle{\\int ^x_0}(\\displaystyle{\\int ^u_0}f(t)dt)du"
By the Fundamental Theorem of Calculus:
"\\frac{d}{dx}(\\displaystyle{\\int ^x_0}uf(u)du)=xf(x)"
"\\frac{d}{dx}(\\displaystyle{\\int ^x_0}\\displaystyle{\\int ^u_0}f(t)dtdu)=\\displaystyle{\\int ^x_0}f(t)dt"
Notice here we needed both that f and the indefinite integral of f are continuous functions. Now,
"g'(x)=\\displaystyle{\\int ^x_0}f(t)dt+xf(x)-xf(x)-\\displaystyle{\\int ^x_0}f(u)du=0"
So by the Mean Value Theorem, g is a constant. Further, observe that
"g(0)=\\displaystyle{\\int ^0_0}f(u)(x-u)du-\\displaystyle{\\int ^0_0}(\\displaystyle{\\int ^u_0}f(t)dt)du=0-0=0"
Thus, g(x) = 0 for all x. It follows that
"\\displaystyle{\\int ^x_0}f(u)(x-u)du=\\displaystyle{\\int ^x_0}(\\displaystyle{\\int ^u_0}f(t)dt)du"
Comments
Leave a comment