Question #260497

Prove that if f is continuous, then:


∫ (x>0) f(u)(x-u).du= ∫ (x>0) ( ∫ (u>0) f(t) dt) du.





1
Expert's answer
2021-11-04T09:20:38-0400

let


g(x)=0xf(u)(xu)du0x(0uf(t)dt)dug(x)=\displaystyle{\int ^x_0}f(u)(x-u)du-\displaystyle{\int ^x_0}(\displaystyle{\int ^u_0}f(t)dt)du


By the Fundamental Theorem of Calculus:


ddx(0xuf(u)du)=xf(x)\frac{d}{dx}(\displaystyle{\int ^x_0}uf(u)du)=xf(x)


ddx(0x0uf(t)dtdu)=0xf(t)dt\frac{d}{dx}(\displaystyle{\int ^x_0}\displaystyle{\int ^u_0}f(t)dtdu)=\displaystyle{\int ^x_0}f(t)dt


Notice here we needed both that f and the indefinite integral of f are continuous functions. Now,


g(x)=0xf(t)dt+xf(x)xf(x)0xf(u)du=0g'(x)=\displaystyle{\int ^x_0}f(t)dt+xf(x)-xf(x)-\displaystyle{\int ^x_0}f(u)du=0


So by the Mean Value Theorem, g is a constant. Further, observe that 


g(0)=00f(u)(xu)du00(0uf(t)dt)du=00=0g(0)=\displaystyle{\int ^0_0}f(u)(x-u)du-\displaystyle{\int ^0_0}(\displaystyle{\int ^u_0}f(t)dt)du=0-0=0


Thus, g(x) = 0 for all x. It follows that


0xf(u)(xu)du=0x(0uf(t)dt)du\displaystyle{\int ^x_0}f(u)(x-u)du=\displaystyle{\int ^x_0}(\displaystyle{\int ^u_0}f(t)dt)du


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS