f(x)=cosxDomain: (−∞,∞)
Range: [−1,1]
There are no asymptotes.
f(−x)=cos(−x)=cosx=f(x),x∈RThe function is even. The graph is symmetric with respect to the y-axis.
f(x+T)=f(x+2π)=f(x),x∈RThe function is periodic. The period is T=2π.
y - intersection: x=0,f(0)=cos(0)=1.
Point (0,1)
x - intersection(s): y=0,0=cosx=>x=2π+πn,n∈Z.
Points (2π+πn,0),n∈Z
f′(x)=(cosx)=−sinx Find the critical number(s)
f′(x)=0=>−sinx=0=>x=πk,k∈ZIf −π+2πk<x<2πk,k∈Z, then f′(x)>0,f(x) increases.
If 2πk<x<π+2πk,k∈Z, then f′(x)<0,f(x) decreases.
f(2πk)=cos(2πk)=1,k∈Z
f(π+2πk)=cos(π+2πk)=−1,k∈Z
The function f(x)=cosx has the local maximum with value of 1 at x=2πk,k∈Z.
The function f(x)=cosx has the local minimum with value of −1 at x=π+2πk,k∈Z.
f′′(x)=(−sinx)′=−cosxFind the point(s) of inflection
f′′(x)=0=>−cosx=0=>x=2π+πm,m∈Zf(2π+πm)=cos(2π+πm)=0,m∈Z Points of inflection: (2π+πm,0),m∈Z
If −2π+2πm<x<2π+2πm,m∈Z, then f′′(x)<0,f(x) is concave down.
If 2π+2πm<x<23π+2πm,m∈Z, then f′′(x)>0,f(x) is concave up.
Sketch the graph of f(x)=cosx
Comments