Question #260213

Plot a graph of cosx


1
Expert's answer
2021-11-02T19:04:20-0400
f(x)=cosxf(x)=\cos x

Domain: (,)(-\infin, \infin)

Range: [1,1][-1, 1]

There are no asymptotes.


f(x)=cos(x)=cosx=f(x),xRf(-x)=\cos(-x)=\cos x=f(x), x\in \R

The function is even. The graph is symmetric with respect to the y-axis.


f(x+T)=f(x+2π)=f(x),xRf(x+T)=f(x+2\pi)=f(x), x\in \R

The function is periodic. The period is T=2π.T=2\pi.


yy - intersection: x=0,f(0)=cos(0)=1.x=0, f(0)=\cos(0)=1.

Point (0,1)(0, 1)


xx - intersection(s): y=0,0=cosx=>x=π2+πn,nZ.y=0, 0=\cos x=>x=\dfrac{\pi}{2}+\pi n, n\in \Z.

Points (π2+πn,0),nZ(\dfrac{\pi}{2}+\pi n, 0), n\in \Z



f(x)=(cosx)=sinxf'(x)=(\cos x)=-\sin x

Find the critical number(s)


f(x)=0=>sinx=0=>x=πk,kZf'(x)=0=>-\sin x=0=>x=\pi k, k\in \Z

If π+2πk<x<2πk,kZ,-\pi+2\pi k<x<2\pi k, k\in \Z, then f(x)>0,f(x)f'(x)>0, f(x) increases.


If 2πk<x<π+2πk,kZ,2\pi k<x<\pi+2\pi k, k\in \Z, then f(x)<0,f(x)f'(x)<0, f(x) decreases.


f(2πk)=cos(2πk)=1,kZf(2\pi k)=\cos(2\pi k)=1,k\in \Z


f(π+2πk)=cos(π+2πk)=1,kZf(\pi+2\pi k)=\cos(\pi+2\pi k)=-1,k\in \Z


The function f(x)=cosxf(x)=\cos x has the local maximum with value of 11 at x=2πk,kZ.x=2\pi k, k\in \Z.


The function f(x)=cosxf(x)=\cos x has the local minimum with value of 1-1 at x=π+2πk,kZ.x=\pi+2\pi k, k\in \Z.



f(x)=(sinx)=cosxf''(x)=(-\sin x)'=-\cos x

Find the point(s) of inflection


f(x)=0=>cosx=0=>x=π2+πm,mZf''(x)=0=>-\cos x=0=>x=\dfrac{\pi}{2}+\pi m, m\in \Zf(π2+πm)=cos(π2+πm)=0,mZf(\dfrac{\pi}{2}+\pi m)=\cos(\dfrac{\pi}{2}+\pi m)=0,m\in \Z

Points of inflection: (π2+πm,0),mZ(\dfrac{\pi}{2}+\pi m, 0), m\in\Z

If π2+2πm<x<π2+2πm,mZ,-\dfrac{\pi}{2}+2\pi m<x<\dfrac{\pi}{2}+2\pi m, m\in \Z, then f(x)<0,f(x)f''(x)<0, f(x) is concave down.


If π2+2πm<x<3π2+2πm,mZ,\dfrac{\pi}{2}+2\pi m<x<\dfrac{3\pi}{2}+2\pi m, m\in \Z, then f(x)>0,f(x)f''(x)>0, f(x) is concave up.


Sketch the graph of f(x)=cosxf(x)=\cos x





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS