Answer to Question #260494 in Calculus for Roots

Question #260494

Consider the function f(x)=(x−2)^3

(a) Estimate the area between the curve y=f(x), the x-axis, and the lines x=2 and x=6, using a Riemann sum with four rectangles (use the right endpoint rule).

(b) Calculate the precise area by taking the limit of a Riemann sum.


1
Expert's answer
2021-11-08T20:33:27-0500

f(x)=(x2)3Our change in x(Δ) is given byΔx=624=1The Riemann sum which we denote by Sn isSn=Δx[f(2+1)+f(2+2)+f(2+3)+f(2+4)]Sn=1[f(3)+f(4)+f(5)+f(6)]=(32)3+(42)3+(52)3+(62)3=100Suppose [2,6] is divided into n intervals with s the width of eachinterval 62n=4nThe area of each sum is 4n(xi2)3, i = 1, 2, ..., n andxi=4inSince we are using the right Riemann sum, we haveS=i=1n4n(4in2)3=1n4(i=1n64i396i2n+81n28n3)=1n4(64(n(n+1)2)296n(n(n+1)(2n+1)6)+8n2(n(n+1)2)8n4)Taking the limit of the expression above, we have thatlimn1n4(64(n(n+1)2)296n(n(n+1)(2n+1)6)+8n2(n(n+1)2)8n4)=12\newcommand{\disp}{\displaystyle} \disp f(x )= (x-2)^3\\ \text{Our change in x($\Delta$) is given by}\\ \Delta x= \frac{6-2}{4}=1\\ \text{The Riemann sum which we denote by $S_n$ is}\\ S_n = \Delta x[f(2+1) +f(2+2) + f(2+3)+f(2+4)]\\ S_n = 1[f(3) +f(4) +f(5) +f(6)]\\ = (3-2)^3+(4-2)^3+(5-2)^3+(6-2)^3=100\\ \text{Suppose [2,6] is divided into n intervals with s the width of each}\\ \text{interval $\frac{6-2}{n} = \frac{4}{n}$}\\ \text{The area of each sum is $\frac{4}{n}(x_i-2)^3$, i = 1, 2, ..., n and}\\ x_i = \frac{4i}{n}\\ \text{Since we are using the right Riemann sum, we have}\\ S = \sum^n_{i=1}\frac{4}{n}(\frac{4i}{n}-2)^3\\ = \frac{1}{n^4}(\sum^n_{i=1} 64i^3-96i^2n+81n^2-8n^3)\\ = \frac{1}{n^4}(64(\frac{n(n+1)}{2})^2-96n(\frac{n(n+1)(2n+1)}{6})+8n^2(\frac{n(n+1)}{2})-8n^4)\\ \text{Taking the limit of the expression above, we have that}\\ \lim_{n \to \infty} \frac{1}{n^4}(64(\frac{n(n+1)}{2})^2-96n(\frac{n(n+1)(2n+1)}{6})+8n^2(\frac{n(n+1)}{2})-8n^4)=12


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment