f(x)=sinxDomain: (−∞,∞)
Range: [−1,1]
There are no asymptotes.
f(−x)=sin(−x)=−sinx=−f(x),x∈RThe function is odd. The graph is symmetric with respect to the origin.
f(x+T)=f(x+2π)=f(x),x∈RThe function is periodic. The period is T=2π.
y - intersection:x=0,f(0)=sin(0)=0.
Point (0,0).
The graph passes through the origin.
x - intersection(s): y=0,0=sinx=>x=πn,n∈Z.
Points (πn,0),n∈Z
f′(x)=(sinx)=cosx Find the critical number(s)
f′(x)=0=>cosx=0=>x=2π+πk,k∈ZIf −2π+2πk<x<2π+2πk,k∈Z, then f′(x)>0,f(x) increases.
If 2π+2πk<x<23π+2πk,k∈Z, then f′(x)<0,f(x) decreases.
f(−2π+2πk)=sin(−2π+2πk)=−1,k∈Z
f(2π+2πk)=sin(2π+2πk)=1,k∈Z
The function f(x)=sinx has the local maximum with value of 1 at x=2π+2πk,k∈Z.
The function f(x)=sinx has the local minimum with value of −1 at x=−2π+2πk,k∈Z.
f′′(x)=(cosx)′=−sinxFind the point(s) of inflection
f′′(x)=0=>−sinx=0=>x=πm,m∈Zf(πm)=sin(πm)=0,m∈Z Points of inflection: (πm,0),m∈Z
If −π+2πm<x<2πm,m∈Z, then f′′(x)>0,f(x) is concave up.
If 2πm<x<π+2πm,m∈Z, then f′′(x)<0,f(x) is concave down.
Sketch the graph of f(x)=sinx
Comments