Question #260212

Plot a graph of sinx


1
Expert's answer
2021-11-03T08:05:46-0400
f(x)=sinxf(x)=\sin x

Domain: (,)(-\infin, \infin)

Range: [1,1][-1, 1]

There are no asymptotes.


f(x)=sin(x)=sinx=f(x),xRf(-x)=\sin(-x)=-\sin x=-f(x), x\in \R

The function is odd. The graph is symmetric with respect to the origin.


f(x+T)=f(x+2π)=f(x),xRf(x+T)=f(x+2\pi)=f(x), x\in \R

The function is periodic. The period is T=2π.T=2\pi.


yy ​- intersection:x=0,f(0)=sin(0)=0.x=0, f(0)=\sin(0)=0.

Point (0,0).(0, 0).

The graph passes through the origin.

xx ​- intersection(s): y=0,0=sinx=>x=πn,nZ.y=0, 0=\sin x=>x=\pi n, n\in \Z.

Points (πn,0),nZ(\pi n, 0), n\in \Z



f(x)=(sinx)=cosxf'(x)=(\sin x)=\cos x

Find the critical number(s)


f(x)=0=>cosx=0=>x=π2+πk,kZf'(x)=0=>\cos x=0=>x=\dfrac{\pi}{2}+\pi k, k\in \Z

If π2+2πk<x<π2+2πk,kZ,-\dfrac{\pi}{2}+2\pi k<x<\dfrac{\pi}{2}+2\pi k, k\in \Z, then f(x)>0,f(x)f'(x)>0, f(x) increases.


If π2+2πk<x<3π2+2πk,kZ,\dfrac{\pi}{2}+2\pi k<x<\dfrac{3\pi}{2}+2\pi k, k\in \Z, then f(x)<0,f(x)f'(x)<0, f(x) decreases.


f(π2+2πk)=sin(π2+2πk)=1,kZf(-\dfrac{\pi}{2}+2\pi k)=\sin(-\dfrac{\pi}{2}+2\pi k)=-1,k\in \Z


f(π2+2πk)=sin(π2+2πk)=1,kZf(\dfrac{\pi}{2}+2\pi k)=\sin(\dfrac{\pi}{2}+2\pi k)=1,k\in \Z


The function f(x)=sinxf(x)=\sin x has the local maximum with value of 11 at x=π2+2πk,kZ.x=\dfrac{\pi}{2}+2\pi k, k\in \Z.


The function f(x)=sinxf(x)=\sin x has the local minimum with value of 1-1 at x=π2+2πk,kZ.x=-\dfrac{\pi}{2}+2\pi k, k\in \Z.



f(x)=(cosx)=sinxf''(x)=(\cos x)'=-\sin x

Find the point(s) of inflection


f(x)=0=>sinx=0=>x=πm,mZf''(x)=0=>-\sin x=0=>x=\pi m, m\in \Zf(πm)=sin(πm)=0,mZf(\pi m)=\sin(\pi m)=0,m\in \Z

Points of inflection: (πm,0),mZ(\pi m, 0), m\in\Z

If π+2πm<x<2πm,mZ,-\pi+2\pi m<x<2\pi m, m\in \Z, then f(x)>0,f(x)f''(x)>0, f(x) is concave up.


If 2πm<x<π+2πm,mZ,2\pi m<x<\pi+2\pi m, m\in \Z, then f(x)<0,f(x)f''(x)<0, f(x) is concave down.


Sketch the graph of f(x)=sinxf(x)=\sin x





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS