Show that the maximum value of a 2 b 2 c 2 on a sphere of radius r centered at the origin of a Cartesian abc-coordinate system in (r 2/3)3 .
Let "f(a,b,c)=a^2b^2c^2"
Where "a^2+b^2+c^2=r^2"
"\\implies g(a,b,c)=a^2+b^2+c^2"
Use Lagrange multipliers to find the maximum value of "a^2b^2c^2"
"\\nabla f(a,b,c)=\\lambda\\nabla g"
"\\implies<2ab^2c^2,2a^2bc^2,2a^2b^2c>=\\lambda<2a,2b,2c>"
"\\implies ab^2c^2=a\\lambda" , "a^2bc^2=b\\lambda" , "a^2b^2c=c\\lambda"
"\\implies \\lambda=b^2c^2" , "\\lambda=a^2c^2" , "\\lambda=a^2b^2"
"\\implies b^2c^2=a^2c^2=a^2b^2\\implies a=b=c"
Substitute a=b=c in "a^2+b^2+c^2=r^2"
"a=b=c=\\frac{r}{\\sqrt3}"
"(a^2b^2c^2)_{max}=(\\frac{r^2}{3})^3"
Comments
Leave a comment