Let f ( a , b , c ) = a 2 b 2 c 2 f(a,b,c)=a^2b^2c^2 f ( a , b , c ) = a 2 b 2 c 2
Where a 2 + b 2 + c 2 = r 2 a^2+b^2+c^2=r^2 a 2 + b 2 + c 2 = r 2
⟹ g ( a , b , c ) = a 2 + b 2 + c 2 \implies g(a,b,c)=a^2+b^2+c^2 ⟹ g ( a , b , c ) = a 2 + b 2 + c 2
Use Lagrange multipliers to find the maximum value of a 2 b 2 c 2 a^2b^2c^2 a 2 b 2 c 2
∇ f ( a , b , c ) = λ ∇ g \nabla f(a,b,c)=\lambda\nabla g ∇ f ( a , b , c ) = λ ∇ g
⟹ < 2 a b 2 c 2 , 2 a 2 b c 2 , 2 a 2 b 2 c > = λ < 2 a , 2 b , 2 c > \implies<2ab^2c^2,2a^2bc^2,2a^2b^2c>=\lambda<2a,2b,2c> ⟹ < 2 a b 2 c 2 , 2 a 2 b c 2 , 2 a 2 b 2 c >= λ < 2 a , 2 b , 2 c >
⟹ a b 2 c 2 = a λ \implies ab^2c^2=a\lambda ⟹ a b 2 c 2 = aλ , a 2 b c 2 = b λ a^2bc^2=b\lambda a 2 b c 2 = bλ , a 2 b 2 c = c λ a^2b^2c=c\lambda a 2 b 2 c = c λ
⟹ λ = b 2 c 2 \implies \lambda=b^2c^2 ⟹ λ = b 2 c 2 , λ = a 2 c 2 \lambda=a^2c^2 λ = a 2 c 2 , λ = a 2 b 2 \lambda=a^2b^2 λ = a 2 b 2
⟹ b 2 c 2 = a 2 c 2 = a 2 b 2 ⟹ a = b = c \implies b^2c^2=a^2c^2=a^2b^2\implies a=b=c ⟹ b 2 c 2 = a 2 c 2 = a 2 b 2 ⟹ a = b = c
Substitute a=b=c in a 2 + b 2 + c 2 = r 2 a^2+b^2+c^2=r^2 a 2 + b 2 + c 2 = r 2
a = b = c = r 3 a=b=c=\frac{r}{\sqrt3} a = b = c = 3 r
( a 2 b 2 c 2 ) m a x = ( r 2 3 ) 3 (a^2b^2c^2)_{max}=(\frac{r^2}{3})^3 ( a 2 b 2 c 2 ) ma x = ( 3 r 2 ) 3
Comments