Show that the maximum value of a 2 b 2 c 2 on a sphere of radius r centered at the origin of a Cartesian abc-coordinate system in (r 2/3)3 .
Let f(a,b,c)=a2b2c2f(a,b,c)=a^2b^2c^2f(a,b,c)=a2b2c2
Where a2+b2+c2=r2a^2+b^2+c^2=r^2a2+b2+c2=r2
⟹ g(a,b,c)=a2+b2+c2\implies g(a,b,c)=a^2+b^2+c^2⟹g(a,b,c)=a2+b2+c2
Use Lagrange multipliers to find the maximum value of a2b2c2a^2b^2c^2a2b2c2
∇f(a,b,c)=λ∇g\nabla f(a,b,c)=\lambda\nabla g∇f(a,b,c)=λ∇g
⟹ <2ab2c2,2a2bc2,2a2b2c>=λ<2a,2b,2c>\implies<2ab^2c^2,2a^2bc^2,2a^2b^2c>=\lambda<2a,2b,2c>⟹<2ab2c2,2a2bc2,2a2b2c>=λ<2a,2b,2c>
⟹ ab2c2=aλ\implies ab^2c^2=a\lambda⟹ab2c2=aλ , a2bc2=bλa^2bc^2=b\lambdaa2bc2=bλ , a2b2c=cλa^2b^2c=c\lambdaa2b2c=cλ
⟹ λ=b2c2\implies \lambda=b^2c^2⟹λ=b2c2 , λ=a2c2\lambda=a^2c^2λ=a2c2 , λ=a2b2\lambda=a^2b^2λ=a2b2
⟹ b2c2=a2c2=a2b2 ⟹ a=b=c\implies b^2c^2=a^2c^2=a^2b^2\implies a=b=c⟹b2c2=a2c2=a2b2⟹a=b=c
Substitute a=b=c in a2+b2+c2=r2a^2+b^2+c^2=r^2a2+b2+c2=r2
a=b=c=r3a=b=c=\frac{r}{\sqrt3}a=b=c=3r
(a2b2c2)max=(r23)3(a^2b^2c^2)_{max}=(\frac{r^2}{3})^3(a2b2c2)max=(3r2)3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments