Find the area of the region enclosed by the graphs of f(x) = x^3 and and g(x) = x^2+2x.
Points of intersections of f(x) and g(x):
"x^3=x^2+2x"
"x(x^2-x-2)=0"
"x=-1, x=0, x=2"
Area of the region enclosed the graphs:
"A=\\int_{-1}^0(x^3-x^2-2x)dx+\\int_0^2(x^2+2x-x^3)dx="
"=(\\frac{x^4}{4}-\\frac{x^3}{3}-x^2)|_{x=-1}^{x=0}+(\\frac{x^3}{3}+x^2-\\frac{x^4}{4})|_{x=0}^{x=2}="
"=\\frac{5}{12}+\\frac{8}{3}=\\frac{37}{3}."
Comments
Leave a comment