Find the area of the region enclosed by the graphs of f(x) = x^3 and and g(x) = x^2+2x.
Points of intersections of f(x) and g(x):
x3=x2+2xx^3=x^2+2xx3=x2+2x
x(x2−x−2)=0x(x^2-x-2)=0x(x2−x−2)=0
x=−1,x=0,x=2x=-1, x=0, x=2x=−1,x=0,x=2
Area of the region enclosed the graphs:
A=∫−10(x3−x2−2x)dx+∫02(x2+2x−x3)dx=A=\int_{-1}^0(x^3-x^2-2x)dx+\int_0^2(x^2+2x-x^3)dx=A=∫−10(x3−x2−2x)dx+∫02(x2+2x−x3)dx=
=(x44−x33−x2)∣x=−1x=0+(x33+x2−x44)∣x=0x=2==(\frac{x^4}{4}-\frac{x^3}{3}-x^2)|_{x=-1}^{x=0}+(\frac{x^3}{3}+x^2-\frac{x^4}{4})|_{x=0}^{x=2}==(4x4−3x3−x2)∣x=−1x=0+(3x3+x2−4x4)∣x=0x=2=
=512+83=373.=\frac{5}{12}+\frac{8}{3}=\frac{37}{3}.=125+38=337.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment