If F(t) = 4t^2i - tj + t^2k and G(t) = ti + 2t^2j + 4 sin t k, then find (cos t F)
F(t)=4t2i^−tj^+t2k^G(t)=ti^+2t2j^+4sintk^∴F.G=4t3−2t3+4(sint)t2=2t3+4t2(sint)F(t) = 4t^2\hat{i} - t \hat{j} + t^2\hat{k}\\G(t) = t\hat{i} + 2t^2\hat{j} + 4 sin t \hat{k}\\ \therefore F.G=4t^3-2t^3+4(sint)t^2=2t^3+4t^2(sint)F(t)=4t2i^−tj^+t2k^G(t)=ti^+2t2j^+4sintk^∴F.G=4t3−2t3+4(sint)t2=2t3+4t2(sint)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment