By Gauss divergence theorem\\∬sF.nˉˉ ds=∭v div dv
where Fˉ.nˉ=lx2+my2+nz2
let nˉ=li+mj+nk then Fˉ=xi2+y@j+n62kˉ
so that div Fˉ=δxδ(x2)+δyδ(y2)+δzδ(z2)
=2x+2y+2z=2(x+y+z)
∭vdivFˉdiv=∭v2(x+y+z)dxdydz....(1)
now consider ∭v2x dx dy dz
use spherical coordinate
x−a=sinθ cosθy−b=sinθ sinθz−c=cosθ
dx dy dz=sinθ cosθ
and 0≤θ≤π,0=θ≤2π,0≤e
∭v2x dx dy dz=∫0π∫02π∫0e2(a+rsinθcosθ)r2sinθdvdθdθ
∫0π∫02π∫0e2ar2+sinθdvdθdθ+∫0π∫02π∫0er3+sin2θdvdθdθ
=−cos∫0π(2ae3)∫02πdθ+∫π0(21−cosθ)dθ(sinθ)∫02π(4e4)
=232ae3(2π−0)=38aπe3
similarly∭2y dx dy dz=38bπe3
and ∭2z dx dy dz=38cπe3
by adding these three integrals we get
∬sF.nˉˉ ds=∭v div Fˉdv=8πe3(a+b+c)
Comments