Question #259142

Q.1: Apply Gauss's Divergence theorem to evaluate double integration S (lx^ 2 +my^ 2 +nz^ 2 )dS taken over the sphere (x-a)^ 2 +(y-b)^ 2 +(z-c)^ 2 = rho^ 2 ;l,m,n being the direction cosines of the external normal to the sphere.

1
Expert's answer
2021-11-01T12:10:13-0400

By Gauss divergence theorem\\sF.nˉˉ ds=v div dv\iint_s\bar{F.\bar{n}}\space ds=\iiint_v\space div\space dv

where Fˉ.nˉ=lx2+my2+nz2\bar{F}.\bar{n}=lx^2+my^2+nz^2

let nˉ=li+mj+nk then Fˉ=xi2+y@j+n62kˉ\bar{n}=li+mj+nk\space then \space \bar{F}=xi^2+y@j+n62\bar{k}

so that div Fˉ=δδx(x2)+δδy(y2)+δδz(z2)\bar{F}=\frac{\delta}{\delta x}(x^2)+\frac{\delta}{\delta y}(y^2)+\frac{\delta}{\delta z}(z^2)

=2x+2y+2z=2(x+y+z)=2x+2y+2z\\=2(x+y+z)

vdivFˉdiv=v2(x+y+z)dxdydz....(1)\iiint_v div \bar{F} div=\iiint_v 2(x+y+z)dxdydz....(1)

now consider v2x dx dy dz\iiint_v 2x\space dx\space dy\space dz

use spherical coordinate

xa=sinθ cosθyb=sinθ sinθzc=cosθx-a=sin \theta\space cos\theta\\ y-b=sin \theta\space sin\theta\\z-c=cos\theta

dx dy dz=sinθ cosθdx\space dy\space dz=sin \theta\space cos \theta

and 0θπ,0=θ2π,0e0≤\theta≤\pi,0=\theta≤2\pi,0≤e

v2x dx dy dz=0π02π0e2(a+rsinθcosθ)r2sinθdvdθdθ\iiint_v 2x\space dx\space dy\space dz=\int^{\pi }_0 \int ^{2\pi}_0 \int ^e_0 2(a+r sin \theta cos \theta)r^2 sin\theta dvd \theta d \theta


0π02π0e2ar2+sinθdvdθdθ+0π02π0er3+sin2θdvdθdθ\int^{\pi }_0 \int ^{2\pi}_0 \int ^e_0 2ar^2+ sin \theta dvd \theta d \theta+ \int^{\pi }_0 \int ^{2\pi}_0 \int ^e_0 r^3+ sin ^2\theta dvd \theta d \theta

=cos0π(2ae3)02πdθ+π0(1cosθ2)dθ(sinθ)02π(e44)=-cos\int ^{\pi}_0 (2ae^3)\int ^{2\pi}_0 d\theta+{\int\pi}_0(\frac{1-cos \theta}{2}) d\theta(sin\theta)\int^{2\pi}_0(\frac{e^4}{4})

=22ae33(2π0)=83aπe3=2\frac{2ae^3}{3}(2\pi-0)\\=\frac{8}{3}a\pi e^3

similarly2y dx dy dz=83bπe3\iiint 2y\space dx\space dy\space dz=\frac{8}{3}b \pi e^3

and 2z dx dy dz=83cπe3\iiint 2z\space dx\space dy\space dz=\frac{8}{3}c \pi e^3

by adding these three integrals we get

sF.nˉˉ ds=v div Fˉdv=8πe3(a+b+c)\iint_s\bar{F.\bar{n}}\space ds=\iiint_v\space div\space \bar{F} dv=8\pi e^3(a+b+c)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS