Q.1: Apply Gauss's Divergence theorem to evaluate double integration S (lx^ 2 +my^ 2 +nz^ 2 )dS taken over the sphere (x-a)^ 2 +(y-b)^ 2 +(z-c)^ 2 = rho^ 2 ;l,m,n being the direction cosines of the external normal to the sphere.
By Gauss divergence theorem\\"\\iint_s\\bar{F.\\bar{n}}\\space ds=\\iiint_v\\space div\\space dv"
where "\\bar{F}.\\bar{n}=lx^2+my^2+nz^2"
let "\\bar{n}=li+mj+nk\\space then \\space \\bar{F}=xi^2+y@j+n62\\bar{k}"
so that div "\\bar{F}=\\frac{\\delta}{\\delta x}(x^2)+\\frac{\\delta}{\\delta y}(y^2)+\\frac{\\delta}{\\delta z}(z^2)"
"=2x+2y+2z\\\\=2(x+y+z)"
"\\iiint_v div \\bar{F} div=\\iiint_v 2(x+y+z)dxdydz....(1)"
now consider "\\iiint_v 2x\\space dx\\space dy\\space dz"
use spherical coordinate
"x-a=sin \\theta\\space cos\\theta\\\\\n\ny-b=sin \\theta\\space sin\\theta\\\\z-c=cos\\theta"
"dx\\space dy\\space dz=sin \\theta\\space cos \\theta"
and "0\u2264\\theta\u2264\\pi,0=\\theta\u22642\\pi,0\u2264e"
"\\iiint_v 2x\\space dx\\space dy\\space dz=\\int^{\\pi }_0 \\int ^{2\\pi}_0 \\int ^e_0 2(a+r sin \\theta cos \\theta)r^2 sin\\theta dvd \\theta d \\theta"
"\\int^{\\pi }_0 \\int ^{2\\pi}_0 \\int ^e_0 2ar^2+ sin \\theta dvd \\theta d \\theta+\n\\int^{\\pi }_0 \\int ^{2\\pi}_0 \\int ^e_0 r^3+ sin ^2\\theta dvd \\theta d \\theta"
"=-cos\\int ^{\\pi}_0 (2ae^3)\\int ^{2\\pi}_0 d\\theta+{\\int\\pi}_0(\\frac{1-cos \\theta}{2}) d\\theta(sin\\theta)\\int^{2\\pi}_0(\\frac{e^4}{4})"
"=2\\frac{2ae^3}{3}(2\\pi-0)\\\\=\\frac{8}{3}a\\pi e^3"
similarly"\\iiint 2y\\space dx\\space dy\\space dz=\\frac{8}{3}b \\pi e^3"
and "\\iiint 2z\\space dx\\space dy\\space dz=\\frac{8}{3}c \\pi e^3"
by adding these three integrals we get
"\\iint_s\\bar{F.\\bar{n}}\\space ds=\\iiint_v\\space div\\space \\bar{F} dv=8\\pi e^3(a+b+c)"
Comments
Leave a comment