Solution:
Given, y 2 = 8 x y^2=8x y 2 = 8 x and point is (4, 2).
Let y=a and put in above equation.
a 2 = 8 x ⇒ x = a 2 8 a^2=8x
\\\Rightarrow x=\dfrac{a^2}8 a 2 = 8 x ⇒ x = 8 a 2
so, the point ( a 2 8 , a ) (\dfrac{a^2}8,a) ( 8 a 2 , a ) lies on the curve.
Let the distance between ( a 2 8 , a ) (\dfrac{a^2}8,a) ( 8 a 2 , a ) and (4, 2) be given by D.
Then,
D 2 = ( a 2 8 − 4 ) 2 + ( a − 2 ) 2 ⇒ D 2 = 1 64 ( a 2 − 32 ) 2 + ( a − 2 ) 2 . . . ( i ) D^2=(\dfrac{a^2}8-4)^2+(a-2)^2
\\ \Rightarrow D^2=\dfrac1{64}(a^2-32)^2+(a-2)^2\ ...(i) D 2 = ( 8 a 2 − 4 ) 2 + ( a − 2 ) 2 ⇒ D 2 = 64 1 ( a 2 − 32 ) 2 + ( a − 2 ) 2 ... ( i )
Differentiating both sides of (i) w.r.t a a a ,
2 D . D ′ = 1 32 ( a 2 − 32 ) ( 2 a ) + 2 ( a − 2 ) 2D.D'=\dfrac1{32}(a^2-32)(2a)+2(a-2) 2 D . D ′ = 32 1 ( a 2 − 32 ) ( 2 a ) + 2 ( a − 2 )
We need minimum distance, so put D ′ = 0 D'=0 D ′ = 0
0 = 1 32 ( a 2 − 32 ) ( 2 a ) + 2 ( a − 2 ) ⇒ 0 = 1 16 a ( a 2 − 32 ) + 2 ( a − 2 ) ⇒ 0 = a ( a 2 − 32 ) + 32 ( a − 2 ) ⇒ 0 = a 3 − 32 a + 32 a − 64 ⇒ 0 = a 3 − 64 ⇒ a = 4 0=\dfrac1{32}(a^2-32)(2a)+2(a-2)
\\ \Rightarrow 0=\dfrac1{16}a(a^2-32)+2(a-2)
\\ \Rightarrow 0=a(a^2-32)+32(a-2)
\\ \Rightarrow 0=a^3-32a+32a-64
\\ \Rightarrow 0=a^3-64
\\ \Rightarrow a=4 0 = 32 1 ( a 2 − 32 ) ( 2 a ) + 2 ( a − 2 ) ⇒ 0 = 16 1 a ( a 2 − 32 ) + 2 ( a − 2 ) ⇒ 0 = a ( a 2 − 32 ) + 32 ( a − 2 ) ⇒ 0 = a 3 − 32 a + 32 a − 64 ⇒ 0 = a 3 − 64 ⇒ a = 4
Put this value in (i).
D 2 = 1 64 ( 4 2 − 32 ) 2 + ( 4 − 2 ) 2 ⇒ D 2 = 1 64 ( − 16 ) 2 + ( 2 ) 2 ⇒ D 2 = 1 64 ( 256 ) + 4 ⇒ D 2 = 4 + 4 = 8 ⇒ D = 2 2 u n i t s D^2=\dfrac1{64}(4^2-32)^2+(4-2)^2
\\ \Rightarrow D^2=\dfrac1{64}(-16)^2+(2)^2
\\ \Rightarrow D^2=\dfrac1{64}(256)+4
\\ \Rightarrow D^2=4+4=8
\\ \Rightarrow D=2\sqrt2\ units D 2 = 64 1 ( 4 2 − 32 ) 2 + ( 4 − 2 ) 2 ⇒ D 2 = 64 1 ( − 16 ) 2 + ( 2 ) 2 ⇒ D 2 = 64 1 ( 256 ) + 4 ⇒ D 2 = 4 + 4 = 8 ⇒ D = 2 2 u ni t s
Comments