Question #259062

Find the minimum distance from the point (4, 2) to the parabola y²=8x.

1
Expert's answer
2021-11-03T06:49:10-0400

Solution:

Given, y2=8xy^2=8x and point is (4, 2).

Let y=a and put in above equation.

a2=8xx=a28a^2=8x \\\Rightarrow x=\dfrac{a^2}8

so, the point (a28,a)(\dfrac{a^2}8,a) lies on the curve.

Let the distance between (a28,a)(\dfrac{a^2}8,a) and (4, 2) be given by D.

Then,

D2=(a284)2+(a2)2D2=164(a232)2+(a2)2 ...(i)D^2=(\dfrac{a^2}8-4)^2+(a-2)^2 \\ \Rightarrow D^2=\dfrac1{64}(a^2-32)^2+(a-2)^2\ ...(i)

Differentiating both sides of (i) w.r.t aa,

2D.D=132(a232)(2a)+2(a2)2D.D'=\dfrac1{32}(a^2-32)(2a)+2(a-2)

We need minimum distance, so put D=0D'=0

0=132(a232)(2a)+2(a2)0=116a(a232)+2(a2)0=a(a232)+32(a2)0=a332a+32a640=a364a=40=\dfrac1{32}(a^2-32)(2a)+2(a-2) \\ \Rightarrow 0=\dfrac1{16}a(a^2-32)+2(a-2) \\ \Rightarrow 0=a(a^2-32)+32(a-2) \\ \Rightarrow 0=a^3-32a+32a-64 \\ \Rightarrow 0=a^3-64 \\ \Rightarrow a=4

Put this value in (i).

D2=164(4232)2+(42)2D2=164(16)2+(2)2D2=164(256)+4D2=4+4=8D=22 unitsD^2=\dfrac1{64}(4^2-32)^2+(4-2)^2 \\ \Rightarrow D^2=\dfrac1{64}(-16)^2+(2)^2 \\ \Rightarrow D^2=\dfrac1{64}(256)+4 \\ \Rightarrow D^2=4+4=8 \\ \Rightarrow D=2\sqrt2\ units


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS