Find the domain and range of the function f defined by f(x) = 1/1-sinx
(a) The domain of a function is the set of input or argument values for which the function is real and defined.
Domain of "\\frac{1}{1-sinx}":
"=2\\pi n \\leq x \\lt \\frac{\\pi}{2} +2\\pi n \\space or \\space \\frac{\\pi}{2} +2\\pi n \\lt x \\lt 2\\pi +2\\pi n"
The range is the set of values of the dependent variable for which a function is defined
"Range \\space of\\space\\frac{1}{1-sinx}:\\space= \\begin{bmatrix}\n solution: & \\frac{1}{2} \\leq f(x)\\leq 1 \\\\\n interval\\space notation: &\\lbrack \\frac{1}{2},1\\rbrack\n\\end{bmatrix}""Range = \\lbrack \\frac{1}{2}, 1 \\rbrack"
Comments
Leave a comment