Answer to Question #259010 in Calculus for Pankaj

Question #259010

Using the Epsilon and Delta definition, show that lim x approaching 2 for (3x-5) is =1



1
Expert's answer
2021-11-07T18:08:24-0500

Given any ϵ>0 we choose δϵ<ϵ3Given \ any \ \epsilon \gt0 \ we \ choose\ \delta_\epsilon \lt \frac{\epsilon}{3}

Explanation

we have to show or prove that given any ϵ>0\epsilon \gt0 we can find a δϵ>0\delta_\epsilon \gt 0 such that:

f(x)1<ϵ  for x(2δϵ,2+δϵ)\lvert f(x) -1 \rvert \lt \epsilon \space \ for \ x \isin (2- \delta_\epsilon , 2+ \delta_\epsilon )


we evaluate the difference:

f(x)1=3x51=3x6=3x2\lvert f(x) -1 \rvert = |3x-5-1|=|3x-6|\\=3|x-2|


and we can see that :


f(x)1<ϵ    x2<ϵ3|f(x)-1|\lt \epsilon \iff |x-2| \lt \frac{\epsilon}{3}


so given ϵ>0\epsilon \gt 0 we can choose δϵ<ϵ3\delta_\epsilon \lt \frac{\epsilon}{3} and we have:

x(2δϵ,2+δϵ)    x2<ϵ3    f(x)1<ϵx \isin (2- \delta_\epsilon , 2+ \delta_\epsilon ) \implies |x-2| \lt \frac{\epsilon}{3}\\\iff |f(x)-1|\lt\epsilon


which shows the point.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment