Using the Epsilon and Delta definition, show that lim x approaching 2 for (3x-5) is =1
"Given \\ any \\ \\epsilon \\gt0 \\ we \\ choose\\ \\delta_\\epsilon \\lt \\frac{\\epsilon}{3}"
Explanation
we have to show or prove that given any "\\epsilon \\gt0" we can find a "\\delta_\\epsilon \\gt 0" such that:
"\\lvert f(x) -1 \\rvert \\lt \\epsilon \\space \\ for \\ x \\isin (2- \\delta_\\epsilon , 2+ \\delta_\\epsilon )"
we evaluate the difference:
"\\lvert f(x) -1 \\rvert = |3x-5-1|=|3x-6|\\\\=3|x-2|"
and we can see that :
"|f(x)-1|\\lt \\epsilon \\iff |x-2| \\lt \\frac{\\epsilon}{3}"
so given "\\epsilon \\gt 0" we can choose "\\delta_\\epsilon \\lt \\frac{\\epsilon}{3}" and we have:
"x \\isin (2- \\delta_\\epsilon , 2+ \\delta_\\epsilon ) \\implies |x-2| \\lt \\frac{\\epsilon}{3}\\\\\\iff |f(x)-1|\\lt\\epsilon"
which shows the point.
Comments
Leave a comment