Answer to Question #259188 in Calculus for zetadddd

Question #259188

An object in free fall from

50 m high, so the height is

when t is h(t) = 50 – 4.9t2

.

What is the speed at

t = 2?

2. Determine the equation of the tangent line

on the curve y = x3 at the point (2.8)


1
Expert's answer
2021-11-03T19:05:34-0400

cThe speed is given by the derivative of h(t)h(t)=4.9t2+50h(t)=9.4tAt t = 2,h(t) = -18.8For the 2nd question, the equation of the tangent is given by y=mx+cwhere m represents the gradient and c the intercept, we find m by computing the the derivativey(x)=3x2,at x = 2.8, y=3(2.8)2=23.52Next, we compute the intercept c, at x = 2.82.83=23.52(2.8)+c    c=43.904Thus, the equation of the tangent is given byy=23.52x43.904c\displaystyle \text{The speed is given by the derivative of h(t)}\\ h(t) = -4.9t^2 + 50\\ h'(t) = -9.4t\\ \text{At t = 2,$ h'(t)$ = -18.8}\\ \text{For the 2nd question, the equation of the tangent is given by $y= mx+c$}\\ \text{where m represents the gradient and c the intercept, we find m by computing the }\\ \text{the derivative}\\ y'(x) =3x^2, \text{at x = 2.8, $y = 3(2.8)^2 =23.52$}\\ \text{Next, we compute the intercept c, at x = 2.8}\\ 2.8^3 = 23.52(2.8) + c\\ \implies c = -43.904\\ \text{Thus, the equation of the tangent is given by}\\ y = 23.52x -43.904


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment