Determine whether the following series converge, converge absolutely, converge conditionally, or diverge.
1.
"\\int^{\\infin}_1\\frac{1}{x^p}dx" is convergent if and only if "p>1"
"\\displaystyle{\\lim_{k\\to \\infin}}(\\sqrt{k}+1\/\\sqrt k)^{-3}(\\sqrt k)^3=1\\neq 0"
Since series "\\sum(1\/k^{3\/2})" converge, series "\\displaystyle\\sum_{k=1}^\t\u221e" "(\u221ak+1\/\u221ak)"-3 converge also.
2.
"\\displaystyle\\sum_{k=1}^\t\u221e" "(cos(k\\pi\/2)\/(2k)\\pi"="\\displaystyle\\sum_{k=1}^\t\u221e" "\\frac{(-1)^{k}\\pi}{4k}"
Since "\\displaystyle\\sum_{k=1}^\t\u221e" "\\frac{1}{k}" diverge and "\\displaystyle{\\lim_{k\\to \\infin}}|(cos(k\\pi\/2)\/(2k)\\pi|=0" , the series conditionally convergent.
3.
"\\displaystyle{\\lim_{k\\to \\infin}}\\frac{(k+2)!k!}{(2k+2)!}\\cdot\\frac{(2k)!}{(k+1)!(k-1)!}=\\displaystyle{\\lim_{k\\to \\infin}}\\frac{(k+2)k}{(2k+1)(2k+2)}=1\/4<1"
Since "\\displaystyle\\sum_{k=1}^\t\u221e|a_k|" converge, the series absolutely converge.
4.
"\\displaystyle{\\lim_{k\\to \\infin}}\\frac{a_{k+1}}{a_k}=\\displaystyle{\\lim_{k\\to \\infin}}\\frac{2(k+1)-1}{3(k+1)-2}=2\/3<1"
The series converge.
Comments
Leave a comment