Question #255377

find the equation of the tangent plane and the normal line given the surface xy^2z^3=8 at (2,2,1)


1
Expert's answer
2021-10-25T03:39:12-0400

Given, equation of the surface is f(x,y,z)=xy2z38f(x,y,z)=xy^2z^3-8 .

And ,we need to find the equation of tangent plane and normal line at (x0,y0,z0)=(2,2,1).

fx=y2z3,fy=2xyz3,fz=3xy2z2At point (2,2,1),fx=4,fy=8,fz=24Equation of tangent plane,fx(xx0)+fy(yy0)+fz(zz0)=04(x2)+8(y2)+24(z1)=04x+8y+24z=48Equation of normal line,xx0fx=yy0fy=zz0fzx24=y28=z124\frac{\partial f }{\partial x}=y^2z^3,\frac{\partial f }{\partial y}=2xyz^3,\frac{\partial f }{\partial z}=3xy^2z^2\\ \text{At point (2,2,1),} \frac{\partial f }{\partial x}=4, \frac{\partial f }{\partial y}=8, \frac{\partial f }{\partial z}=24\\ \text{Equation of tangent plane,}\\ \frac{\partial f }{\partial x}(x-x_0)+\frac{\partial f }{\partial y} (y-y_0)+\frac{\partial f }{\partial z} (z-z_0)=0\\ 4(x-2)+8(y-2)+24(z-1)=0\\ 4x+8y+24z=48\\ \text{Equation of normal line,}\\ \frac{x-x_0}{\frac{\partial f }{\partial x}}=\frac{y-y_0}{\frac{\partial f }{\partial y}}=\frac{z-z_0}{\frac{\partial f }{\partial z}}\\ \frac{x-2}{4}=\frac{y-2}{8}=\frac{z-1}{24}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS