Given, equation of the surface is f(x,y,z)=xy2z3−8 .
And ,we need to find the equation of tangent plane and normal line at (x0,y0,z0)=(2,2,1).
∂x∂f=y2z3,∂y∂f=2xyz3,∂z∂f=3xy2z2At point (2,2,1),∂x∂f=4,∂y∂f=8,∂z∂f=24Equation of tangent plane,∂x∂f(x−x0)+∂y∂f(y−y0)+∂z∂f(z−z0)=04(x−2)+8(y−2)+24(z−1)=04x+8y+24z=48Equation of normal line,∂x∂fx−x0=∂y∂fy−y0=∂z∂fz−z04x−2=8y−2=24z−1
Comments