Evaluate the double integral (9 - x^2 - y^2)^(1/2) where
R = {(x,y) : x^2 + y^2 < or = to 9 , x > or = to 0 }
ANSWER :9π
EXPLANATION
To calculate the integral , we transform the Cartesian coordinates into polar coordinates: "x=r cos\u03b8, \u03c5=r sin\u03b8" . The region of integration is a semicircle of radius "r=3, \\theta \\in \\left[ -\\frac { \\pi }{ 2 } ,\\frac { \\pi }{ 2 } \\right]" . Since "x^2+y^2=9" , then
"\\iint _{ R }^{ \\ }{ \\sqrt { 9-{ x }^{ 2 }-{ y }^{ 2 } } dxdy\\ =\\int _{ -\\frac { \\pi }{ 2 } }^{ \\ \\frac { \\pi }{ 2 } }{ \\int _{ 0 }^{ 3 }{ r } \\sqrt { 9-{ r }^{ 2 } } d\\theta dr\\ } }="
"=\\left( \\int _{ -\\frac { \\pi }{ 2 } }^{ \\ \\frac { \\pi }{ 2 } }{ d\\theta } \\right) \\cdot \\left( \\int _{ 0 }^{ 3 }{ r } \\sqrt { 9-{ r }^{ 2 } } \\ dr \\right) =" "-\\frac { \\pi }{ 2 } \\int _{ 0 }^{ 3 }{ \\ } \\sqrt { 9-{ r }^{ 2 } } \\ d\\left( 9-{ r }^{ 2 } \\right) =-\\frac { \\pi }{ 2 } \\cdot \\frac { 2 }{ 3 } \\ \\left[ F(3)-F(0) \\right]" . Because"F(r)={ \\left[ { \\left( 9-{ r }^{ 2 } \\right) }^{ \\frac { 3 }{ 2 } } \\right] }", so "F(3)-F(0)=-27" and "\\iint _{ R }^{ \\ }{ \\sqrt { 9-{ x }^{ 2 }-{ y }^{ 2 } } dxdy\\ =9\\pi \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad }"
Comments
Leave a comment