Question #254868

Evaluate the double integral (9 - x^2 - y^2)^(1/2) where


R = {(x,y) : x^2 + y^2 < or = to 9 , x > or = to 0 }


1
Expert's answer
2021-10-22T15:29:23-0400

ANSWER :9π

EXPLANATION

To calculate the integral , we transform the Cartesian coordinates into polar coordinates: x=rcosθ,υ=rsinθx=r cosθ, υ=r sinθ . The region of integration is a semicircle of radius r=3,θ[π2,π2]r=3, \theta \in \left[ -\frac { \pi }{ 2 } ,\frac { \pi }{ 2 } \right] . Since x2+y2=9x^2+y^2=9 , then

R 9x2y2dxdy =π2 π203r9r2dθdr =\iint _{ R }^{ \ }{ \sqrt { 9-{ x }^{ 2 }-{ y }^{ 2 } } dxdy\ =\int _{ -\frac { \pi }{ 2 } }^{ \ \frac { \pi }{ 2 } }{ \int _{ 0 }^{ 3 }{ r } \sqrt { 9-{ r }^{ 2 } } d\theta dr\ } }=

=(π2 π2dθ)(03r9r2 dr)==\left( \int _{ -\frac { \pi }{ 2 } }^{ \ \frac { \pi }{ 2 } }{ d\theta } \right) \cdot \left( \int _{ 0 }^{ 3 }{ r } \sqrt { 9-{ r }^{ 2 } } \ dr \right) = π203 9r2 d(9r2)=π223 [F(3)F(0)]-\frac { \pi }{ 2 } \int _{ 0 }^{ 3 }{ \ } \sqrt { 9-{ r }^{ 2 } } \ d\left( 9-{ r }^{ 2 } \right) =-\frac { \pi }{ 2 } \cdot \frac { 2 }{ 3 } \ \left[ F(3)-F(0) \right] . BecauseF(r)=[(9r2)32]F(r)={ \left[ { \left( 9-{ r }^{ 2 } \right) }^{ \frac { 3 }{ 2 } } \right] }, so F(3)F(0)=27F(3)-F(0)=-27 and R 9x2y2dxdy =9π\iint _{ R }^{ \ }{ \sqrt { 9-{ x }^{ 2 }-{ y }^{ 2 } } dxdy\ =9\pi \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad }



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS