Let x>0, and y be a positive function of x such that x^y=y^-x.
Find y′
"x^{y}=y^{(-x)}"
Taking logerithm with respect to base e on both sides
"\\ln{x^{y}}=\\ln{y^{(-x)}}"
=> "y\\ln{x}=-x\\ln{y}"
Differentiating with respect to x
"\\frac{d(y\\ln{x})}{dx}= - \\frac{d(x\\ln{y})}{dx}"
=> "y\\frac{d}{dx} (\\ln{x})+\\ln{x} \\frac{dy}{dx}=-x\\frac{d}{dx}(\\ln{y})-\\ln{y} \\frac{d}{dx}{(x)}"
=> "y.\\frac{1}{x} + ln{x} \\frac{dy}{dx}=-x.\\frac{1}{y}.\\frac{dy}{dx}-\\ln{y}"
=> "\\ln{x} \\frac{dy}{dx}+x.\\frac{1}{y}.\\frac{dy}{dx}" = "-\\frac{y}{x} - \\ln{y}"
=> "x(y\\ln{x}+x)\\frac{dy}{dx}= -y(y+x\\ln{y})"
=>
=> "\\frac{dy}{dx}=" "-\\frac{ y(y+x\\ln{y})}{x(y\\ln{x}+x)}"
So , y' = "-\\frac{ y(y+x\\ln{y})}{x(y\\ln{x}+x)}"
Comments
Leave a comment