Question #254217

Find the volume of the region below the surface f(x,y) = 3y^2 + x and above the region of the xy-plane enclosed by the lines y = 2, x=0, y = 0, and y = x - 1.


1
Expert's answer
2021-10-21T11:52:22-0400

Let us find the volume of the region below the surface f(x,y)=3y2+xf(x,y) = 3y^2 + x and above the region of the xy-plane enclosed by the lines y=2,x=0,y=0,y = 2, x=0, y = 0, and y=x1.y = x - 1.


V=12dy0y+1f(x,y)dx=12dy0y+1(3y2+x)dx=12dy(3y2x+x22)0y+1=12(3y2(y+1)+(y+1)22)dy=12(3y3+3y2+y2+2y+12)dy=12(3y3+72y2+y+12)dy=(34y4+76y3+y22+12y)12=12+283+2+1(3476+1212)=15+28334+76=15+1129+1412=15+11712=15+394=24.75V=\int_{-1}^2 dy\int_0^{y+1} f(x,y)dx =\int_{-1}^2 dy\int_0^{y+1} (3y^2 + x)dx =\int_{-1}^2 dy (3y^2x + \frac{x^2}2)|_0^{y+1}\\ =\int_{-1}^2 (3y^2(y+1)+\frac{(y+1)^2}2)dy =\int_{-1}^2 (3y^3+3y^2+\frac{y^2+2y+1}2)dy =\int_{-1}^2 (3y^3+\frac{7}2y^2+y+\frac{1}2)dy\\ =(\frac{3}4y^4+\frac{7}6y^3+\frac{y^2}2+\frac{1}2y)|_{-1}^2 =12+\frac{28}3+2+1-(\frac{3}4-\frac{7}6+\frac{1}2-\frac{1}2) =15+\frac{28}3-\frac{3}4+\frac{7}6 =15+\frac{112-9+14}{12} =15+\frac{117}{12}=15+\frac{39}4=24.75(cubis units)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS