Let us find the volume of the region below the surface f(x,y)=3y2+x and above the region of the xy-plane enclosed by the lines y=2,x=0,y=0, and y=x−1.
V=∫−12dy∫0y+1f(x,y)dx=∫−12dy∫0y+1(3y2+x)dx=∫−12dy(3y2x+2x2)∣0y+1=∫−12(3y2(y+1)+2(y+1)2)dy=∫−12(3y3+3y2+2y2+2y+1)dy=∫−12(3y3+27y2+y+21)dy=(43y4+67y3+2y2+21y)∣−12=12+328+2+1−(43−67+21−21)=15+328−43+67=15+12112−9+14=15+12117=15+439=24.75(cubis units)
Comments