Find the volume inside the sphere x^2 + y^2 + z^2 =16 and outside the cylinder x^2 + y^2 =4.
"0\\le \\theta\\le 2\\pi,2\\le r\\le 4"
Volume inside sphere but outside cylinder:
"V=2\\iint\\sqrt{16-x^2-y^2}dA=2\\int^{2\\pi}_0\\int^4_2r(\\sqrt{16-r^2})drd\\theta="
"=-\\frac{2}{3}\\int^{2\\pi}_0(16-r^2)^{3\/2}|^4_2d\\theta=2\\frac{(2\\sqrt3)^{3}}{3}\\int^{2\\pi}_0d\\theta=16\\sqrt3\\cdot2\\pi=32\\pi\\sqrt3"
Comments
Leave a comment