Find the volume inside the sphere x^2 + y^2 + z^2 =16 and outside the cylinder x^2 + y^2 =4.
0≤θ≤2π,2≤r≤40\le \theta\le 2\pi,2\le r\le 40≤θ≤2π,2≤r≤4
Volume inside sphere but outside cylinder:
V=2∬16−x2−y2dA=2∫02π∫24r(16−r2)drdθ=V=2\iint\sqrt{16-x^2-y^2}dA=2\int^{2\pi}_0\int^4_2r(\sqrt{16-r^2})drd\theta=V=2∬16−x2−y2dA=2∫02π∫24r(16−r2)drdθ=
=−23∫02π(16−r2)3/2∣24dθ=2(23)33∫02πdθ=163⋅2π=32π3=-\frac{2}{3}\int^{2\pi}_0(16-r^2)^{3/2}|^4_2d\theta=2\frac{(2\sqrt3)^{3}}{3}\int^{2\pi}_0d\theta=16\sqrt3\cdot2\pi=32\pi\sqrt3=−32∫02π(16−r2)3/2∣24dθ=23(23)3∫02πdθ=163⋅2π=32π3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments