Question #254214

Find the volume inside the sphere x^2 + y^2 + z^2 =16 and outside the cylinder x^2 + y^2 =4.


1
Expert's answer
2021-10-21T13:18:22-0400

0θ2π,2r40\le \theta\le 2\pi,2\le r\le 4

Volume inside sphere but outside cylinder:


V=216x2y2dA=202π24r(16r2)drdθ=V=2\iint\sqrt{16-x^2-y^2}dA=2\int^{2\pi}_0\int^4_2r(\sqrt{16-r^2})drd\theta=


=2302π(16r2)3/224dθ=2(23)3302πdθ=1632π=32π3=-\frac{2}{3}\int^{2\pi}_0(16-r^2)^{3/2}|^4_2d\theta=2\frac{(2\sqrt3)^{3}}{3}\int^{2\pi}_0d\theta=16\sqrt3\cdot2\pi=32\pi\sqrt3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS