Find the mass and center of mass of the thin plate that occupies the triangle with vertices (0,0), (2,1), and (0,3) and has density function p(x,y) = x + y.
"=\\displaystyle\\int_{0}^{2}\\bigg[xy+\\dfrac{y^2}{2}\\bigg]\\begin{matrix}\n -x+3 \\\\\n x\/2\n\\end{matrix}dx"
"=\\displaystyle\\int_{0}^{2}(-x^2+3x+x^2\/2-3x+9\/2-x^2\/2-x^2\/8)dx"
"=\\displaystyle\\int_{0}^{2}(-9x^2\/8+9\/2)dx=[-3x^3\/8+9x\/2]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}"
"=-3+9=6"
"=\\displaystyle\\int_{0}^{2}\\bigg[x^2y+\\dfrac{xy^2}{2}\\bigg]\\begin{matrix}\n -x+3 \\\\\n x\/2\n\\end{matrix}dx"
"=\\displaystyle\\int_{0}^{2}(-x^3+3x^2+x^3\/2-3x^2+9x\/2-x^3\/2-x^3\/8)dx"
"=\\displaystyle\\int_{0}^{2}(-9x^3\/8+9x\/2)dx=[-9x^4\/32+9x^2\/4]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}"
"=-9\/2+9=9\/2"
"=\\displaystyle\\int_{0}^{2}\\bigg[xy^2\/2+\\dfrac{y^3}{3}\\bigg]\\begin{matrix}\n -x+3 \\\\\n x\/2\n\\end{matrix}dx"
"=\\displaystyle\\int_{0}^{2}(x^3\/2-3x^2+9x\/2-x^3\/3+3x^2-9x+9)dx"
"-\\displaystyle\\int_{0}^{2}(x^3\/8+x^3\/24)dx"
"=\\displaystyle\\int_{0}^{2}(-9x\/2+9)dx"
"=[-9x^2\/4+9x]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}"
"=-9+18=9"
"\\bar{y}=\\dfrac{M_x}{m}=\\dfrac{9\/2}{6}=\\dfrac{3}{4}"
"m=6, C\\bigg(\\dfrac{3}{2}, \\dfrac{3}{4}\\bigg)"
Comments
Leave a comment