We are asked for the extreme values of subject to the constraint g ( x , y ) = x 2 + y 2 = 1. g(x, y)=x^2+y^2=1. g ( x , y ) = x 2 + y 2 = 1.
Using Lagrange multipliers, we solve the equations ∇ f = λ ∇ g \nabla f=\lambda \nabla g ∇ f = λ ∇ g and g ( x , y ) = 1 g(x, y)=1 g ( x , y ) = 1 , which can be written as
f x = λ g x , f y = λ g y , g ( x , y ) = 1 f_x=\lambda g_x, f_y=\lambda g_y, g(x, y)=1 f x = λ g x , f y = λ g y , g ( x , y ) = 1 or as
4 y = 2 λ x 4y=2\lambda x 4 y = 2 λ x
4 x = 2 λ y 4x=2\lambda y 4 x = 2 λ y
x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1 From two first equations
y x = x y o r x = y = 0 \dfrac{y}{x}=\dfrac{x}{y}\ or\ x=y=0 x y = y x or x = y = 0 But x 2 + y 2 = 1. x^2+y^2=1. x 2 + y 2 = 1. Then we have
x 2 = y 2 = 1 2 x^2=y^2=\dfrac{1}{2} x 2 = y 2 = 2 1 Therefore has possible extreme values at the points ( − 2 2 , − 2 2 ) , ( − 2 2 , 2 2 ) , (-\dfrac{\sqrt{2}}{2}, -\dfrac{\sqrt{2}}{2}), (-\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2}), ( − 2 2 , − 2 2 ) , ( − 2 2 , 2 2 ) ,
( 2 2 , − 2 2 ) , (\dfrac{\sqrt{2}}{2}, -\dfrac{\sqrt{2}}{2}), ( 2 2 , − 2 2 ) , and ( 2 2 , 2 2 ) . (\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2}). ( 2 2 , 2 2 ) . Evaluating at these four points, we find that
f ( − 2 2 , − 2 2 ) = 2 f(-\dfrac{\sqrt{2}}{2}, -\dfrac{\sqrt{2}}{2})=2 f ( − 2 2 , − 2 2 ) = 2
f ( − 2 2 , 2 2 ) = − 2 f(-\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2})=-2 f ( − 2 2 , 2 2 ) = − 2
f ( 2 2 , − 2 2 ) = − 2 f(\dfrac{\sqrt{2}}{2}, -\dfrac{\sqrt{2}}{2})=-2 f ( 2 2 , − 2 2 ) = − 2
f ( 2 2 , 2 2 ) = 2 f(\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2})=2 f ( 2 2 , 2 2 ) = 2 Therefore the maximum value of on the circle is f ( − 2 2 , − 2 2 ) = f ( 2 2 , 2 2 ) = 2 f(-\dfrac{\sqrt{2}}{2}, -\dfrac{\sqrt{2}}{2})=f(\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2})=2 f ( − 2 2 , − 2 2 ) = f ( 2 2 , 2 2 ) = 2 and the
minimum value is f ( − 2 2 , 2 2 ) = f ( 2 2 , − 2 2 ) = − 2. f(-\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2})=f(\dfrac{\sqrt{2}}{2}, -\dfrac{\sqrt{2}}{2})=-2. f ( − 2 2 , 2 2 ) = f ( 2 2 , − 2 2 ) = − 2.
Comments